Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alternative Medicine

“Lifting the Lid on AI’s Black Box: The Importance of Explainability and Plausibility Checks in Scientific Research”

Researchers from chemistry, biology, and medicine are increasingly turning to AI models to develop new hypotheses. However, it is often unclear on which basis the algorithms come to their conclusions and to what extent they can be generalized. A publicationnow warns of misunderstandings in handling artificial intelligence. At the same time, it highlights the conditions under which researchers can most likely have confidence in the models.

Avatar photo

Published

on

The increasing reliance on artificial intelligence (AI) models in various fields of science, including chemistry, biology, and medicine, has raised concerns about the potential risks associated with these powerful tools. Researchers from the University of Bonn have now published a study highlighting the importance of explainability and plausibility checks when using AI procedures in scientific research.

The study’s lead author, Prof. Dr. Jürgen Bajorath, emphasizes that “AI models are black boxes” and should not be blindly trusted. He warns against over-interpreting the results of these models, as they can often provide seemingly plausible explanations for their conclusions without actually understanding the underlying mechanisms.

One of the key challenges in using AI tools is the lack of transparency and interpretability of their decision-making processes. While AI algorithms are incredibly powerful, they can be difficult to understand and may rely on irrelevant features or correlations. This is particularly concerning when it comes to applications in fields like chemistry and medicine, where accuracy and reliability are crucial.

To address this issue, researchers have been working on developing “explainable” AI methods that can provide insights into the decision-making processes of these models. However, even with these tools, there is still a need for careful evaluation and critical thinking when using AI results in scientific research.

The study’s authors stress that experiments are often required to validate the findings of AI models and to determine their relevance to real-world applications. They also highlight the importance of plausibility checks, which involve assessing whether the features or correlations identified by the AI model can actually be responsible for the desired chemical or biological properties.

In conclusion, while AI tools have the potential to revolutionize various fields of science, it is essential to approach their use with caution and critical thinking. By understanding the limitations and strengths of these models, researchers can ensure that they are used responsibly and effectively, ultimately advancing scientific knowledge and improving our world.

The study’s findings emphasize the importance of explainability and plausibility checks when using AI procedures in scientific research, highlighting the need for careful evaluation and critical thinking to avoid misinterpretation of AI results.

Alternative Medicine

“Skin in a Syringe”: Breakthrough Technology Heals Burns without Scars

Scientists in Sweden have developed a groundbreaking “skin in a syringe” — a gel packed with live cells that can be applied directly to wounds or even 3D-printed into skin grafts. Designed to help the body build functional dermis rather than scar tissue, the innovation combines fibroblast cells on gelatin beads with a hyaluronic acid gel, held together using click chemistry. In a parallel advance, the team also created elastic hydrogel threads that can form tiny, fluid-carrying channels, paving the way for artificial tissues and organoid development.

Avatar photo

Published

on

Scientists at Linköping University in Sweden have developed a revolutionary technology that can heal burns without leaving scars. Dubbed “skin in a syringe,” this innovative approach uses 3D-printed skin transplants made from gel containing live cells.

The study, led by researchers Johan Junker and Daniel Aili, aimed to create new skin that doesn’t become scar tissue but a functioning dermis. The dermis is the thicker layer of skin beneath the epidermis, which contains blood vessels, nerves, hair follicles, and other essential structures for skin function and elasticity.

To achieve this, the researchers used click chemistry to connect gelatine beads with hyaluronic acid, creating a liquid that can be applied to wounds using a syringe. The gel becomes gel-like again once applied, making it possible to 3D-print the cells in it.

In the current study, small pucks made from this technology were placed under the skin of mice, showing promising results. The cells survived and produced substances needed to create new dermis, with blood vessels forming in the grafts. This breakthrough has significant implications for burn patients, who often suffer from severe scarring due to traditional transplant methods.

The LiU researchers also developed a method to make threads from hydrogels, which can be used to build mini-tubes or perfusable channels. These tubes can be used to pump fluid through or have blood vessel cells grow in them, potentially solving the problem of blood vessel supply in tissue models.

This research has received funding from various organizations, including the Erling-Persson Foundation and the European Research Council (ERC). The study’s findings were published in Advanced Healthcare Materials.

Continue Reading

Alternative Medicine

A 30-Minute Workout That Could Help Slash Cancer Cell Growth

A vigorous workout can spark anti-cancer proteins, cut cancer cell growth, and help survivors fight recurrence by reducing inflammation and improving body composition.

Avatar photo

Published

on

The article’s core idea is that a single bout of either resistance or high intensity interval training could help in the cancer battle by increasing levels of myokines, a protein produced by muscles which have anti-cancer effects. Here’s the rewritten article:

A groundbreaking study from Edith Cowan University (ECU) has shed light on the potential benefits of exercise for cancer patients. Researchers found that a single bout of either resistance or high intensity interval training could help reduce cancer cell growth by 20 to 30 per cent.

PhD student Mr Francesco Bettariga led the research, which measured myokine levels in breast cancer survivors before, immediately after, and 30 minutes post-exercise. The results showed that both types of exercise increased myokine levels, a protein produced by muscles with anti-cancer effects.

“The results from this study are excellent motivators to add exercise as standard care in the treatment of cancer,” Mr Bettariga said. His research aimed to investigate whether breast cancer survivors would see similar benefits compared to a healthy population, given the impact that cancer treatments and cancer itself often has on the body.

Further research by Mr Bettariga investigated how changes in body composition, following consistent exercise, could impact inflammation, which plays a key role in breast cancer recurrence and mortality. The study found that reducing fat mass and increasing lean mass through exercise could help decrease inflammation, making it a more supportive environment for cancer survivors.

“Strategies are needed to reduce inflammation which may provide a less supportive environment for cancer progression,” Mr Bettariga said. He stressed the importance of consistent exercise, stating that quick fixes to reduce fat mass would not have the same beneficial effects.

“You never want to reduce your weight without exercising, because you need to build or preserve muscle mass and produce these chemicals that you can’t do through just diet alone.” The long-term implications of elevated myokine levels should be further investigated, particularly in relation to cancer recurrence.

Continue Reading

Alternative Medicine

Breaking Barriers in Diabetic Wound Healing: A Revolutionary “Smart” Gel Accelerates Blood Flow and Restores Tissue Repair

A new gel-based treatment could change the way diabetic wounds heal. By combining tiny healing messengers called vesicles with a special hydrogel, scientists have created a dressing that restores blood flow and helps wounds close much faster. In tests, the treatment healed diabetic wounds far quicker than normal, while also encouraging the growth of new blood vessels. Researchers believe this innovation could one day help millions of people with slow-healing wounds caused by diabetes and possibly other conditions.

Avatar photo

Published

on

Breaking Barriers in Diabetic Wound Healing: A Revolutionary “Smart” Gel Accelerates Blood Flow and Restores Tissue Repair

Chronic diabetic wounds, particularly diabetic foot ulcers, pose a significant burden for patients due to impaired blood vessel growth and subsequent tissue repair issues. A groundbreaking study has unveiled a novel approach by combining small extracellular vesicles (sEVs) loaded with miR-221-3p and a GelMA hydrogel to target thrombospondin-1 (TSP-1), a protein that suppresses angiogenesis. This innovative bioactive wound dressing not only accelerates healing but also promotes blood vessel formation, offering a promising new approach to treating one of the most challenging complications of diabetes.

The study explores a new method to stimulate angiogenesis and speed up the healing process by targeting TSP-1 with miR-221OE-sEVs encapsulated in GelMA. This engineered hydrogel has shown significant enhancement in wound healing and blood vessel formation in diabetic mice, offering hope for more effective treatments in the future.

Researchers discovered that high glucose conditions commonly found in diabetic wounds lead to increased levels of TSP-1 in endothelial cells, impairing their ability to proliferate and migrate – key processes for angiogenesis. By utilizing miR-221-3p, a microRNA that targets and downregulates TSP-1 expression, they restored endothelial cell function. The engineered miR-221OE-sEVs were encapsulated within a GelMA hydrogel, ensuring a controlled release at the wound site.

In animal trials, this composite dressing dramatically accelerated wound healing, with a notable increase in vascularization and a 90% wound closure rate within just 12 days, compared to slower healing in control groups. This breakthrough has significant implications for diabetic wound care, offering patients more efficient and lasting wound healing solutions.

As further research and clinical trials progress, the promise of combining miRNA-based therapies with biocompatible hydrogels could become a cornerstone in regenerative medicine, opening up possibilities beyond diabetic foot ulcers. The technology could be adapted for use in treating other chronic wounds, such as those caused by vascular diseases, or even in regenerating tissues like bone and cartilage.

Continue Reading

Trending