Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Automotive and Transportation

Nimble Dimples: Agile Underwater Vehicles Inspired by Golf Balls

Underwater or aerial vehicles with dimples like golf balls could be more efficient and maneuverable, a new prototype has demonstrated.

Avatar photo

Published

on

The University of Michigan has developed a groundbreaking prototype that could revolutionize the way we design and navigate underwater vehicles. By taking inspiration from the humble golf ball, researchers have created a spherical prototype with adjustable surface dimples that can drastically reduce drag while eliminating the need for protruding appendages like fins or rudders.

Anchal Sareen, U-M assistant professor of naval architecture and marine engineering, led the research team in developing the smart morphable sphere. The team formed the prototype by stretching a thin layer of latex over a hollow sphere dotted with holes, resembling a pickleball. A vacuum pump depressurizes the core, pulling the latex inwards to create precise dimples when switched on.

To test how the dimples affected drag, the sphere was put through its paces within a 3-meter-long wind tunnel. The researchers found that for high wind speeds, shallower dimples cut the drag more effectively while deeper dimples were more efficient at lower wind speeds. By adjusting dimple depth, the sphere reduced drag by 50% compared to a smooth counterpart for all conditions.

Moreover, the adaptive skin setup was able to notice changes in the speed of the incoming air and adjust dimples accordingly to maintain drag reductions. This concept could be applied to underwater vehicles, reducing both drag and fuel consumption.

The smart morphable sphere can also generate lift, allowing for controlled movement. By designing the inner skeleton with holes on only one side, the researchers created asymmetric flow separation on the two sides of the sphere, deflecting the wake toward the smooth side. This effectively pushed the sphere in the direction of the dimples, enabling precise steering by selectively activating dimples on the desired side.

The team tested the new sphere in the same wind tunnel setup with varying wind velocity and dimple depth. With the optimal dimple depth, the half rough/half smooth sphere generated lift forces up to 80% of the drag force. This is comparable to the Magnus effect, but instead of using rotation, it was created entirely by modifying the surface texture.

The implications of this research are vast and exciting. For example, compact spherical robotic submarines that prioritize maneuverability over speed for exploration and inspection could benefit from this mechanism, reducing the need for multiple propulsion systems.

Anchal Sareen anticipates collaborations that combine expertise in materials science and soft robotics, further advancing the capabilities of this dynamic skin technology. She believes that this smart dynamic skin technology could be a game-changer for unmanned aerial and underwater vehicles, offering a lightweight, energy-efficient, and highly responsive alternative to traditional jointed control surfaces.

Ultimately, this innovation promises to enhance maneuverability, optimize performance, and unlock new possibilities for vehicle design. As researchers continue to explore and refine this technology, we can expect to see significant advancements in the field of underwater vehicles and beyond.

Automotive and Transportation

“Revolutionizing Battery Life: Scientists Uncover Secret to Making Aqueous Batteries Last 10x Longer”

A team at KAUST has revealed that the short lifespan of aqueous batteries is primarily due to “free water” molecules triggering harmful chemical reactions at the anode. By adding affordable sulfate salts like zinc sulfate, they significantly reduced this issue—boosting battery life over tenfold. The sulfate acts as a “water glue,” stabilizing the water structure and halting the energy-wasting reactions. Not only is this solution simple and cost-effective, but early results suggest it may be a universal fix for various types of metal-anode aqueous batteries.

Avatar photo

Published

on

By

The world is on the cusp of a revolution in sustainable energy storage, thanks to groundbreaking research from scientists at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. In a study published in Science Advances, researchers have uncovered the key to making aqueous rechargeable batteries last significantly longer – up to 10 times more than their current lifespan.

One major factor that determines a battery’s lifespan is its anode. Chemical reactions at the anode generate and store energy, but these same reactions also degrade the anode over time, compromising the battery’s overall performance. The new study reveals how free water molecules contribute to these parasitic reactions, causing unwanted chemical interactions that consume energy and accelerate wear on the anode.

The KAUST team has found that adding zinc sulfate – a common, affordable salt – can significantly mitigate this issue by stabilizing the bonds of free water molecules. This “water glue” effect reduces the number of parasitic reactions, allowing aqueous batteries to last much longer than previously thought possible.

“Our findings highlight the importance of understanding water structure in battery chemistry,” said KAUST Professor Husam Alshareef, principal investigator on the study. “We’re excited about the potential implications for sustainable energy storage.”

The research suggests that sulfate salts can have a universal effect on stabilizing free water molecules and extending the lifespan of all aqueous batteries – not just those using zinc anodes. This breakthrough opens up new possibilities for large-scale energy storage, which is gaining significant global attention as a safer and more sustainable solution.

Aqueous batteries are poised to exceed a market size of $10 billion by 2030, thanks in part to their unique advantages over lithium-ion batteries. Unlike their competitors, aqueous batteries offer a more sustainable option for integrating renewable energy sources like solar power into electrical grids, making them an attractive choice for widespread adoption.

KAUST researchers Yunpei Zhu and Omar Mohammed also contributed to the study, along with Professors Omar Bakr, Xixiang Zhang, and Mani Sarathy.

Continue Reading

Automotive and Transportation

A Breakthrough in Ammonia Production: Harnessing Human-Made Lightning for Sustainable Fertilizers

Australian scientists have discovered a method to produce ammonia—an essential component in fertilizers—using only air and electricity. By mimicking lightning and channeling that energy through a small device, they’ve bypassed the traditional, fossil fuel-heavy method that’s been used for over a century. This breakthrough could lead to cleaner, cheaper fertilizer and even help power the future, offering a potential alternative fuel source for industries like shipping.

Avatar photo

Published

on

By

The world is on the cusp of a revolution in agriculture and industry, thanks to a groundbreaking discovery by researchers at the University of Sydney. By harnessing the power of human-made lightning, they have developed a more efficient method for generating ammonia – one of the most important chemicals used in fertilizers that account for almost half of all global food production.

Traditionally, ammonia has been produced through the Haber-Bosch process, which requires large amounts of energy and relies on fossil fuels. This not only leaves a huge carbon footprint but also necessitates centralized production and long-distance transportation of the product. In contrast, the new method developed by Professor PJ Cullen and his team is a game-changer.

The plasma-based electrolysis system uses electricity to excite nitrogen and oxygen molecules in the air, which are then converted into ammonia gas through a membrane-based electrolyser. This two-step process has shown promising results, with the researchers successfully producing gaseous ammonia – a major breakthrough that opens up new possibilities for sustainable fertilizers.

The implications of this discovery are vast. Ammonia is not only essential for agriculture but also holds potential as a carbon-free fuel source and an effective means of storing and transporting hydrogen. The shipping industry has taken notice, recognizing the potential of ammonia to reduce greenhouse gas emissions.

As the world grapples with climate change and sustainability, this breakthrough provides a beacon of hope for a more environmentally friendly future. With further research and development, it’s clear that green ammonia is on the horizon – and it’s an exciting time for science, industry, and humanity alike.

Professor Cullen and his team are now working tirelessly to refine their method, pushing the energy efficiency of the electrolyzer component to make it more competitive with the Haber-Bosch process. This research has been published in Angewandte Chemie International Edition, a testament to the scientific community’s commitment to innovation and progress.

As we move forward into this new era of sustainable ammonia production, one thing is clear: the future of food, industry, and our planet are intertwined – and this breakthrough is a shining example of humanity’s capacity for innovation and collaboration.

Continue Reading

Automotive and Transportation

Breakthrough in Green Hydrogen Production: Triple-Layer Catalyst Supercharges Energy Yield by 800%

Researchers in Sweden have developed a powerful new material that dramatically boosts the ability to create hydrogen fuel from water using sunlight, making the process eight times more effective than before. This breakthrough could be key to fueling heavy transport like ships and planes with clean, renewable energy.

Avatar photo

Published

on

By

A team of scientists at Linköping University in Sweden has made a groundbreaking discovery in the production of green hydrogen, a promising renewable energy source. By developing a new triple-layer material, they have supercharged the energy yield by an impressive 800%.

Hydrogen produced from water is becoming increasingly important as the world shifts away from fossil fuels. The EU plans to ban new petrol and diesel car sales by 2035, making electric motors more common in vehicles. However, heavy trucks, ships, and aircraft require alternative energy sources, where hydrogen comes into play.

The researchers have previously shown that cubic silicon carbide (3C-SiC) has beneficial properties for facilitating the reaction where water is split into hydrogen and oxygen. Now, they’ve further developed a combined material consisting of three layers: a layer of 3C-SiC, a layer of cobalt oxide, and a catalyst material that helps to split water.

The new material, known as Ni(OH)2/Co3O4/3C-SiC, has demonstrated eight times better performance than pure cubic silicon carbide for splitting water into hydrogen. When sunlight hits the material, electric charges are generated, which are then used to split water. By combining the three layers, the researchers have improved the ability to separate positive and negative charges, making the splitting of water more effective.

The distinction between “grey” and “green” hydrogen is crucial in this context. Almost all hydrogen present on the market is “grey” hydrogen produced from fossil fuels, with significant environmental consequences. In contrast, “green” hydrogen is produced using renewable electricity as a source of energy.

Linköping University researchers aim to utilize only solar energy to drive the photochemical reaction to produce “green” hydrogen. Currently, materials under development have an efficiency of between 1 and 3 per cent, but for commercialization, the target is 10% efficiency. The research team estimates that it may take around five to ten years to develop materials that reach this coveted limit.

The study has been funded by several organizations, including the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Olle Engkvists Stiftelse, the ÅForsk Foundation, the Carl Tryggers Stiftelse, and through the Swedish Government Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.

This breakthrough has the potential to significantly impact the renewable energy landscape, making green hydrogen production more efficient and cost-effective. As researchers continue to push the boundaries of this technology, we can expect even more exciting developments in the future.

Continue Reading

Trending