Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Uncategorized

“Reviving ‘Dead’ Batteries: The Path to a Greener Future”

Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic potential. Yet infrastructure, policy, and technology hurdles must still be overcome.

Avatar photo

Published

on

As the world moves towards a cleaner energy future, the importance of recycling ‘dead’ batteries cannot be overstated. With the growing demand for electric vehicles, portable electronics, and renewable energy storage, lithium has become a critical mineral. According to new research from Edith Cowan University (ECU), tapping into used batteries as a secondary source of lithium not only helps reduce environmental impact but also secures access to this valuable resource, supporting a circular economy and ensuring long-term sustainability in the energy sector.

The global lithium-ion battery market size is projected to expand at a compound annual growth rate of 13 per cent, reaching $87.5 billion by 2027. However, only around 20 per cent of a lithium-ion battery’s capacity is used before the battery is no longer fit for use in electric vehicles, meaning those batteries ending up in storage or on the landfill retain nearly 80 per cent of their lithium capacity.

The Australian Department of Industry, Science and Resources has estimated that by 2035, Australia could be generating 137,000 t of lithium battery waste annually. For the end-of-life batteries, the obvious answer is recycling, said first author Mr Asad Ali, quoting figures from the government which estimates that the recycling industry could be worth between $603 million and $3.1 billion annually in just over a decade.

“By recycling these batteries, you can access not only the remaining lithium – which already purified to near 99 per cent – but you can also retrieve the nickel and the cobalt from these batteries,” Mr Ali noted.

While the lithium retrieved through the recycling process is unlikely to impact the lithium extraction or downstream sectors, the recycling process offered significant environmental benefits when compared with the mining industry. Recycling processes can significantly reduce the extensive use of land, soil contamination, ecological footprint, water footprint, carbon footprint, and harmful chemical release into the environment.

Mining emits up to 37% tons of CO2 per ton of lithium. Recycling processes produce up to 61 per cent less carbon emissions compared with mining and uses 83 per cent less energy and 79 per cent less water as compared to mining.

ECU lecturer and corresponding author Dr Muhammad Azhar said that while Australia holds one of the largest hard rock lithium reserves in the world, the recovery of lithium from end-of-life batteries could provide socio-economic benefits and fulfils environmental sustainability.

The benefits of lithium-ion battery recycling seem obvious, but there are still some challenges to be addressed. The rate of innovation significantly outstrips policy development, and the chemical make-up of the batteries also continuously evolve, which makes the recycling of these batteries more complicated.

However, there is a definite need for investment into the right infrastructure in order to create this circular economy. Several Australian companies are looking at the best ways to approach this, and ECU is exploring the second life of retired lithium batteries, providing a promising future for a greener tomorrow.

Continue Reading

Trending