Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Communications

A Breakthrough in Carbyne Synthesis: Unlocking Its Potential in Next-Generation Electronics

Carbyne, a one-dimensional chain of carbon atoms, is incredibly strong for being so thin, making it an intriguing possibility for use in next-generation electronics, but its extreme instability made it nearly impossible to produce at all, let alone produce enough of it for advanced studies. Now, an international team of researchers may have a solution.

Avatar photo

Published

on

The synthesis of carbyne, a one-dimensional chain of carbon atoms, has long been a challenge due to its extreme instability. However, an international team of researchers has finally found a solution by enclosing it within single-walled carbon nanotubes. This breakthrough opens up new possibilities for using carbyne in next-generation electronics.

The researchers used a special precursor, ammonium cholate, to grow carbyne at low temperatures. They also employed single-walled carbon nanotubes as a protective shell around the carbyne, which helps keep it stable. The new synthesis method produces more carbyne than before, making it easier for scientists to study its properties and explore its potential applications.

The unique properties of carbyne make it an attractive material for next-generation electronics. Unlike graphene, carbyne has a built-in semiconductor gap, allowing it to act as a switch for electrical current. This property makes carbyne-based electronics potentially faster and more efficient than today’s silicon-based technology.

The research team also made an unexpected discovery during the study. They found that a common solvent, cholate, can transform into carbyne chains without additional complex steps. This finding shows how familiar materials can take on new roles in advanced chemistry.

While many questions about carbyne remain unanswered, this breakthrough is a significant step forward. With a stable way to produce carbyne in larger quantities, researchers can now explore its potential more deeply and potentially unlock new technologies in the field of next-generation electronics.

Artificial Intelligence

Google’s Deepfake Hunter: Exposing Manipulated Videos with a Universal Detector

AI-generated videos are becoming dangerously convincing and UC Riverside researchers have teamed up with Google to fight back. Their new system, UNITE, can detect deepfakes even when faces aren’t visible, going beyond traditional methods by scanning backgrounds, motion, and subtle cues. As fake content becomes easier to generate and harder to detect, this universal tool might become essential for newsrooms and social media platforms trying to safeguard the truth.

Avatar photo

Published

on

By

In an era where manipulated videos can spread disinformation, bully people, and incite harm, researchers at the University of California, Riverside (UCR), have created a powerful new system to expose these fakes. Amit Roy-Chowdhury, a professor of electrical and computer engineering, and doctoral candidate Rohit Kundu, teamed up with Google scientists to develop an artificial intelligence model that detects video tampering – even when manipulations go far beyond face swaps and altered speech.

Their new system, called the Universal Network for Identifying Tampered and synthEtic videos (UNITE), detects forgeries by examining not just faces but full video frames, including backgrounds and motion patterns. This analysis makes it one of the first tools capable of identifying synthetic or doctored videos that do not rely on facial content.

“Deepfakes have evolved,” Kundu said. “They’re not just about face swaps anymore. People are now creating entirely fake videos – from faces to backgrounds – using powerful generative models. Our system is built to catch all of that.”

UNITE’s development comes as text-to-video and image-to-video generation have become widely available online. These AI platforms enable virtually anyone to fabricate highly convincing videos, posing serious risks to individuals, institutions, and democracy itself.

“It’s scary how accessible these tools have become,” Kundu said. “Anyone with moderate skills can bypass safety filters and generate realistic videos of public figures saying things they never said.”

Kundu explained that earlier deepfake detectors focused almost entirely on face cues. If there’s no face in the frame, many detectors simply don’t work. But disinformation can come in many forms. Altering a scene’s background can distort the truth just as easily.

To address this, UNITE uses a transformer-based deep learning model to analyze video clips. It detects subtle spatial and temporal inconsistencies – cues often missed by previous systems. The model draws on a foundational AI framework known as SigLIP, which extracts features not bound to a specific person or object. A novel training method, dubbed “attention-diversity loss,” prompts the system to monitor multiple visual regions in each frame, preventing it from focusing solely on faces.

The result is a universal detector capable of flagging a range of forgeries – from simple facial swaps to complex, fully synthetic videos generated without any real footage. It’s one model that handles all these scenarios,” Kundu said. “That’s what makes it universal.”

The researchers presented their findings at the high-ranking 2025 Conference on Computer Vision and Pattern Recognition (CVPR) in Nashville, Tenn. Their paper, led by Kundu, outlines UNITE’s architecture and training methodology.

While still in development, UNITE could soon play a vital role in defending against video disinformation. Potential users include social media platforms, fact-checkers, and newsrooms working to prevent manipulated videos from going viral.

“People deserve to know whether what they’re seeing is real,” Kundu said. “And as AI gets better at faking reality, we have to get better at revealing the truth.”

Continue Reading

Artificial Intelligence

The Quantum Drumhead Revolution: A Breakthrough in Signal Transmission with Near-Perfect Efficiency

Researchers have developed an ultra-thin drumhead-like membrane that lets sound signals, or phonons, travel through it with astonishingly low loss, better than even electronic circuits. These near-lossless vibrations open the door to new ways of transferring information in systems like quantum computers or ultra-sensitive biological sensors.

Avatar photo

Published

on

By

The Niels Bohr Institute at the University of Copenhagen has made a groundbreaking discovery that could revolutionize the way we transmit information. Researchers, in collaboration with the University of Konstanz and ETH Zurich, have successfully sent vibrations through an ultra-thin drumhead, measuring only 10 mm wide, with astonishingly low loss – just one phonon out of a million. This achievement is even more impressive than electronic circuit signal handling.

The drumhead, perforated with many triangular holes, utilizes the concept of phonons to transmit signals. Phonons are essentially sound waves that travel through solid materials by vibrating atoms and pushing each other. This phenomenon is not unlike encoding a message and sending it through a material, where signal loss can occur due to various factors like heat or incorrect vibrations.

The researchers’ success lies in achieving almost lossless transmission of signals through the membrane. The reliability of this platform for sending information is incredibly high, making it a promising candidate for future applications. To measure the loss, researchers directed the signal through the material and around the holes, observing that the amplitude decreased by only about one phonon out of a million.

This achievement has significant implications for quantum research. Building a quantum computer requires super-precise transfer of signals between its different parts. The development of sensors capable of measuring the smallest biological fluctuations in our own body also relies heavily on signal transfer. As Assistant Professor Xiang Xi and Professor Albert Schliesser explain, their current focus is on exploring further possibilities with this method.

“We want to experiment with more complex structures and see how phonons move around them or collide like cars at an intersection,” says Albert Schliesser. “This will give us a better understanding of what’s ultimately possible and what new applications there are.” The pursuit of basic research is about producing new knowledge, and this discovery is a testament to the power of scientific inquiry.

In conclusion, the quantum drumhead revolution has brought us one step closer to achieving near-perfect signal transmission. As researchers continue to explore the possibilities of this method, we can expect exciting breakthroughs in various fields, ultimately leading to innovative applications that will transform our understanding of the world.

Continue Reading

Communications

Artificial Intelligence Isn’t Hurting Workers—It Might Be Helping

Despite widespread fears, early research suggests AI might actually be improving some aspects of work life. A major new study examining 20 years of worker data in Germany found no signs that AI exposure is hurting job satisfaction or mental health. In fact, there s evidence that it may be subtly improving physical health especially for workers without college degrees by reducing physically demanding tasks. However, researchers caution that it s still early days.

Avatar photo

Published

on

By

The relationship between artificial intelligence (AI) and worker well-being has been a topic of concern. However, a recent study suggests that AI exposure may not be causing widespread harm to mental health or job satisfaction. In fact, the data indicates that AI might even be linked to modest improvements in physical health, particularly among employees with less than a college degree.

The study, “Artificial Intelligence and the Wellbeing of Workers,” published in Nature: Scientific Reports, analyzed two decades of longitudinal data from the German Socio-Economic Panel. The researchers explored how workers in AI-exposed occupations fared compared to those in less-exposed roles.

“We find little evidence that AI adoption has undermined workers’ well-being on average,” said Professor Luca Stella, one of the study’s authors. “If anything, physical health seems to have slightly improved, likely due to declining job physical intensity and overall job risk in some of the AI-exposed occupations.”

However, the researchers also highlight reasons for caution. The analysis relies primarily on a task-based measure of AI exposure, which may not capture the full effects of AI adoption. Alternative estimates based on self-reported exposure reveal small negative effects on job and life satisfaction.

“We may simply be too early in the AI adoption curve to observe its full effects,” Stella emphasized. “AI’s impact could evolve dramatically as technologies advance, penetrate more sectors, and alter work at a deeper level.”

The study’s key findings include:

1. Modest improvements in physical health among employees with less than a college degree.
2. Little evidence of widespread harm to mental health or job satisfaction.
3. Small negative effects on job and life satisfaction reported by workers with self-reported exposure to AI.

The researchers note that the sample excludes younger workers and only covers the early phases of AI diffusion in Germany. They caution that outcomes may differ in more flexible labor markets or among younger cohorts entering increasingly AI-saturated workplaces.

“This research is an early snapshot, not the final word,” said Professor Osea Giuntella, another author of the study. “As AI adoption accelerates, continued monitoring of its broader impacts on work and health is essential.”

Ultimately, the study suggests that the impact of AI on worker well-being may be more complex than initially thought. While it is too soon to draw definitive conclusions, the research highlights the need for ongoing monitoring and analysis of AI’s effects on the workforce.

Continue Reading

Trending