Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computers & Math

A Breakthrough in Quantum Computing: Transducer Enables Superconducting Networks

Applied physicists have created a photon router that could plug into quantum networks to create robust optical interfaces for noise-sensitive microwave quantum computers.

Avatar photo

Published

on

The Applied Physicists at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a groundbreaking discovery that could revolutionize quantum computing. Led by Marko Lončar, the team has created a photon router that can bridge the energy gap between microwave and optical photons, enabling control of superconducting qubits using only light.

This breakthrough is a crucial step towards realizing modular, distributed quantum computing networks that leverage existing telecommunications infrastructure. The researchers have designed a microwave-optical quantum transducer, which effectively acts as a router for photons. This device enables the control of microwave qubits with optical signals generated many miles away, making it an essential component in the development of superconducting quantum processors connected by low-loss, high-powered optical networks.

The Harvard team’s 2-millimeter optical device resembles a paper clip and sits on a chip that’s about 2 centimeters in length. It works by linking a microwave resonator with two optical resonators, allowing back-and-forth exchange of energy enabled by the properties of their base material, lithium niobate.

The researchers leveraged this exchange to eliminate the need for bulky, hot microwave cables for controlling qubit states. The same devices used for control could be used for qubit state readout or for forming direct links to convert finicky quantum information into sturdy packets of light between quantum computing nodes.

This breakthrough brings us closer to a world with superconducting quantum processors connected by low-loss, high-powered optical networks. The next step for the transducer could be reliable generation and distribution of entanglement between microwave qubits using light.

The research was conducted in collaboration with experts from Rigetti Computing, University of Chicago, and Massachusetts Institute of Technology. Fabrication of the chips was performed at Harvard’s Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network.

Civil Engineering

A Groundbreaking Magnetic Trick for Quantum Computing: Stabilizing Qubits with Exotic Materials

Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit interactions, this method uses magnetic interactions—common in many materials—to create robust topological excitations. Combined with a new computational tool for finding such materials, this breakthrough could pave the way for practical, disturbance-resistant quantum computers.

Avatar photo

Published

on

By

The article you provided was well-written, but I made some adjustments to improve clarity, structure, and style for general readers. Here’s the rewritten content:

A Groundbreaking Magnetic Trick for Quantum Computing: Stabilizing Qubits with Exotic Materials

Quantum computers have long been touted as revolutionaries in solving complex problems that conventional supercomputers can’t handle. However, their development has been hindered by one major challenge: qubits, the basic units of quantum computers, are extremely delicate and prone to losing their quantum states due to external disturbances.

Researchers from Chalmers University of Technology in Sweden and Aalto University and the University of Helsinki in Finland have now made a groundbreaking discovery that could change this. They’ve developed a new type of exotic quantum material that exhibits robust topological excitations, which are significantly more stable and resilient than other quantum states.

This breakthrough is an important step towards realising practical topological quantum computing by constructing stability directly into the material’s design. The researchers’ innovative approach uses magnetism as the key ingredient to achieve this effect, harnessing magnetic interactions to engineer robust topological excitations in a broader spectrum of materials.

“The advantage of our method is that magnetism exists naturally in many materials,” explains Guangze Chen, postdoctoral researcher in applied quantum physics at Chalmers and lead author of the study published in Physical Review Letters. “You can compare it to baking with everyday ingredients rather than using rare spices. This means that we can now search for topological properties in a much broader spectrum of materials, including those that have previously been overlooked.”

To accelerate the discovery of new materials with useful topological properties, the research team has also developed a new computational tool that can directly calculate how strongly a material exhibits topological behavior.

“Our hope is that this approach can help guide the discovery of many more exotic materials,” says Guangze Chen. “Ultimately, this can lead to next-generation quantum computer platforms, built on materials that are naturally resistant to the kind of disturbances that plague current systems.”

This magnetic trick has the potential to revolutionize the development of practical topological quantum computing and pave the way for next-generation quantum computer platforms. As researchers continue to explore and develop new exotic materials with robust topological excitations, we may finally see the dawn of a new era in quantum computing.

Continue Reading

Artificial Intelligence

“Revolutionizing Computing with the ‘Microwave Brain’ Chip”

Cornell engineers have built the first fully integrated “microwave brain” — a silicon microchip that can process ultrafast data and wireless signals at the same time, while using less than 200 milliwatts of power. Instead of digital steps, it uses analog microwave physics for real-time computations like radar tracking, signal decoding, and anomaly detection. This unique neural network design bypasses traditional processing bottlenecks, achieving high accuracy without the extra circuitry or energy demands of digital systems.

Avatar photo

Published

on

By

Here’s the rewritten article:

The world of computing has taken a significant leap forward with the development of the “microwave brain” chip, a low-power microchip that can compute on both ultrafast data signals and wireless communication signals. This revolutionary innovation, created by researchers at Cornell University, marks the first time a processor has harnessed the physics of microwaves to perform real-time frequency domain computation.

Detailed in the journal Nature Electronics, this groundbreaking processor is the first true microwave neural network and is fully integrated on a silicon microchip. It can handle tasks like radio signal decoding, radar target tracking, and digital data processing while consuming less than 200 milliwatts of power – an impressive feat considering its speed and efficiency.

The secret behind this technology lies in its design as a neural network, modeled after the human brain’s interconnected modes produced in tunable waveguides. This allows it to recognize patterns and learn from data, unlike traditional digital computers that rely on step-by-step instructions timed by a clock. The microwave brain processor uses analog, nonlinear behavior in the microwave regime to handle data streams at speeds of tens of gigahertz – far faster than most digital chips.

“We’ve created something that looks more like a controlled mush of frequency behaviors that can ultimately give you high-performance computation,” says Alyssa Apsel, professor of engineering and co-senior author. Bal Govind, lead author and doctoral student, explains that the chip’s programmable distortion across a wide band of frequencies allows it to be repurposed for several computing tasks.

The microwave brain processor has achieved remarkable accuracy on multiple classification tasks involving wireless signal types, comparable to digital neural networks but with a fraction of the power and size. It can perform both low-level logic functions and complex tasks like identifying bit sequences or counting binary values in high-speed data.

With its extreme sensitivity to inputs, this chip is well-suited for hardware security applications like sensing anomalies in wireless communications across multiple bands of microwave frequencies. The researchers are optimistic about the scalability of this technology and are experimenting with ways to improve its accuracy and integrate it into existing microwave and digital processing platforms.

As the world becomes increasingly dependent on data-driven technologies, innovations like the microwave brain chip have the potential to revolutionize computing and redefine what is possible in the realm of artificial intelligence and machine learning.

Continue Reading

Artificial Intelligence

“Tiny ‘talking’ robots form shape-shifting swarms that heal themselves”

Scientists have designed swarms of microscopic robots that communicate and coordinate using sound waves, much like bees or birds. These self-organizing micromachines can adapt to their surroundings, reform if damaged, and potentially undertake complex tasks such as cleaning polluted areas, delivering targeted medical treatments, or exploring hazardous environments.

Avatar photo

Published

on

By

The article discusses how scientists have developed tiny robots that use sound waves to coordinate into large swarms, exhibiting intelligent-like behavior. This innovative technology has the potential to revolutionize various fields, including environmental remediation, healthcare, and search and rescue operations.

Led by Igor Aronson, a team of researchers created computer models to simulate the behavior of these micromachines. They found that acoustic communication allowed individual robotic agents to work together seamlessly, adapting their shape and behavior to their environment, much like a school of fish or a flock of birds.

The robots’ ability to self-organize and re-form themselves if deformed is a significant breakthrough in the field of active matter, which studies the collective behavior of self-propelled microscopic biological and synthetic agents. This new technology has the potential to tackle complex tasks such as pollution cleanup, medical treatment from inside the body, and even exploration of disaster zones.

The team’s discovery marks a significant leap toward creating smarter, more resilient, and ultimately more useful microrobots with minimal complexity. The insights from this research are crucial for designing the next generation of microrobots capable of performing complex tasks and responding to external cues in challenging environments.

While the robots in the paper were computational agents within a theoretical model, rather than physical devices that were manufactured, the simulations observed the emergence of collective intelligence that would likely appear in any experimental study with the same design. The team’s findings have opened up new possibilities for the use of sound waves as a means of controlling micro-sized robots, offering advantages over chemical signaling such as faster and farther propagation without loss of energy.

This research has far-reaching implications for various fields, including medicine, environmental science, and engineering. It highlights the potential for microrobots to be used in complex tasks such as exploration, cleanup, and medical treatment, and demonstrates their ability to self-heal and maintain collective intelligence even after breaking apart.

Continue Reading

Trending