Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Biotechnology

Breaking Ground in Zoonotic Disease Research: Identifying Potential Treatments for Emerging Viruses

A team of biomedical researchers trained a machine learning algorithm to identify more than two dozen viable treatments for diseases caused by zoonotic pathogens that can jump from animal hosts to infect humans. Scientists used Rhodium software to study bat-borne Nipah and Hendra henipaviruses, which are endemic to some parts of the world and cause particularly lethal infections in humans.

Avatar photo

Published

on

Breaking Ground in Zoonotic Disease Research: Identifying Potential Treatments for Emerging Viruses

A groundbreaking collaboration among researchers at the Southwest Research Institute (SwRI), The University of Texas at San Antonio (UTSA), and Texas Biomedical Research Institute (Texas Biomed) has led to a significant breakthrough in identifying potential treatments for emerging zoonotic pathogens. These diseases, such as Nipah and Hendra henipaviruses, can jump from animal hosts to infect humans, causing severe illnesses and even death.

The research team used the SwRI-developed Rhodium software to study the protein structure of the measles virus, which is in the same family as henipaviruses. By leveraging machine learning algorithms, they virtually screened over 40 million compounds and identified 30 potentially viable viral inhibitors for Nipah and Hendra viruses.

“This breakthrough demonstrates that machine learning can rapidly identify antiviral candidates for highly pathogenic viruses that are difficult to study due to space limitations and biosafety constraints,” said Dr. Jonathan Bohmann, a staff scientist at SwRI, who presented these findings at the Hendra@30 Henipavirus International Conference in Melbourne, Australia.

The team’s research was funded by the Department of Defense through the Peer-Reviewed Medical Research Program (PRMRP), under the Congressionally Directed Medical Research Programs (CDMRP). This funding has opened the door to finding treatments for Nipah and Hendra viruses, which have a high mortality rate of 40-75% in infected individuals.

The researchers’ use of virtual screening technology saved time and resources, allowing them to study such infectious diseases while adhering to strict safety standards and access to a BSL-4 rated high-containment laboratory.

“Our work highlights the power of collaborative, multidisciplinary research by our San Antonio institutions to bring together a comprehensive and cohesive strategy for developing novel anti-viral drug candidates,” said Dr. Stanton McHardy, professor at The University of Texas at San Antonio and director of the Medicinal Chemistry and Synthesis Core Facility at the Center for Innovative Drug Discovery.

The potential treatments identified through this research could have far-reaching implications for addressing related viruses, including measles.

“The results suggest that machine learning can rapidly identify antiviral candidates for highly pathogenic viruses,” said Dr. Bohmann. “Our algorithms allow us to make the best use of resources to deliver a ‘short list’ of potential treatments for further testing.”

This research has significant implications for addressing emerging zoonotic pathogens and developing novel anti-viral drug candidates.

“The power of collaboration is truly evident in this work,” said Dr. Olena Shtanko, assistant professor at Texas Biomed, who collaborated with McHardy and Bohmann by evaluating the effectiveness of the antiviral compounds identified by Rhodium. “We’ve made quite a lot of progress in a short amount of time, but more research is needed.”

Biochemistry Research

Unlocking Nature’s Secrets: Scientists Discover Natural Cancer-Fighting Sugar in Sea Cucumbers

Sea cucumbers, long known for cleaning the ocean floor, may also harbor a powerful cancer-fighting secret. Scientists discovered a unique sugar in these marine creatures that can block Sulf-2, an enzyme that cancer cells use to spread. Unlike traditional medications, this compound doesn t cause dangerous blood clotting issues and offers a cleaner, potentially more sustainable way to develop carbohydrate-based drugs if scientists can find a way to synthesize it in the lab.

Avatar photo

Published

on

Unlocking Nature’s Secrets: Scientists Discover Natural Cancer-Fighting Sugar in Sea Cucumbers

In a groundbreaking study, researchers from the University of Mississippi and Georgetown University have discovered a natural sugar compound found in sea cucumbers that can effectively block Sulf-2, an enzyme crucial for cancer growth. This breakthrough has significant implications for the development of new cancer therapies.

The research team, led by Marwa Farrag, a fourth-year doctoral candidate in the UM Department of BioMolecular Sciences, worked tirelessly to isolate and study the sugar compound, fucosylated chondroitin sulfate, from the sea cucumber Holothuria floridana. This unique sugar is not commonly found in other organisms, making it an exciting area of research.

Human cells are covered in tiny, hairlike structures called glycans that help with cell communication, immune responses, and the recognition of threats such as pathogens. Cancer cells alter the expression of certain enzymes, including Sulf-2, which modifies the structure of glycans, helping cancer spread. By inhibiting this enzyme, researchers believe they can effectively fight against the spread of cancer.

Using both computer modeling and laboratory testing, the research team found that the sugar compound from sea cucumbers can effectively inhibit Sulf-2, a promising step towards developing new cancer therapies. This natural source is particularly appealing as it does not carry the risk of transferring viruses and other harmful agents, unlike extracting carbohydrate-based drugs from pigs or other land mammals.

While this discovery holds great promise, the researchers acknowledge that further study is needed to develop a viable treatment. One of the challenges lies in finding a way to synthesize the sugar compound for future testing. The interdisciplinary nature of the scientific study highlights the importance of cross-disciplinary collaboration in tackling complex diseases like cancer.

This groundbreaking research has far-reaching implications for the medical field and demonstrates the power of scientific discovery in unlocking nature’s secrets. As researchers continue to explore this area, they may uncover new therapies that can effectively combat cancer, ultimately saving lives and improving patient outcomes.

Continue Reading

Bacteria

A New Hope Against Multidrug Resistance: Synthetic Compound Shows Promise

Researchers have synthesized a new compound called infuzide that shows activity against resistant strains of pathogens.

Avatar photo

Published

on

The World Health Organization (WHO) reports that antimicrobial resistance causes more than 1 million deaths every year and contributes to over 35 million additional illnesses. Gram-positive pathogens like Staphylococcus aureus and Enterococcus can cause severe hospital-acquired and community-acquired infections, making the development of effective treatments a pressing concern.

Researchers have recently discovered a synthetic compound called infuzide that shows promise against antimicrobial resistant strains of S. aureus and Enterococcus in laboratory and mouse tests. Infuzide was synthesized as part of a decade-long project by interdisciplinary researchers looking for ways to create compounds that could act against pathogens in ways similar to known pharmaceuticals.

“We started the project as a collaboration, looking for ways to synthesize compounds and connecting them with compounds that might have biological activities,” said medicinal chemist Michel Baltas, Ph.D., from the Laboratoire de Chimie de Coordination at the University of Toulouse in France. Baltas co-led the new work, along with Sidharth Chopra, Ph.D., from the CSIR-Central Drug Research Institute in Lucknow, India.

The researchers found that infuzide specifically attacks bacterial cells and is more effective than the standard antibiotic vancomycin in reducing the size of bacterial colonies in lab tests. In tests of resistant S. aureus infections on the skin of mice, the compound effectively reduced the bacterial population, with an even higher reduction when combined with linezolid.

While infuzide did not show significant activity against gram-negative pathogens, the researchers are exploring small changes to expand its antimicrobial activity. The simplicity of the chemical reactions involved in synthesizing infuzide also makes it easy to scale up production for new treatments.

In addition to its potential against multidrug resistance, the group has been investigating the effects of synthesized compounds on other infectious diseases, including tuberculosis. “We have many other candidates to make antimicrobial compounds,” Baltas said.

Continue Reading

Animals

Sugar-Based Sensors Revolutionize Snake Venom Detection

Researchers have published the first example of a synthetic sugar detection test for snake venom, offering a new route to rapid diagnosis and better antivenoms.

Avatar photo

Published

on

The detection of snake venom is a crucial step in treating life-threatening snake bites. According to the World Health Organization (WHO), every five minutes, 50 people are bitten by a snake worldwide, resulting in four permanent disabilities and one death. Traditional methods for diagnosing snake venom rely on antibodies, which have limitations such as high costs, lengthy procedures, and inconsistencies.

Researchers at the University of Warwick have made a groundbreaking discovery that could revolutionize snake venom detection. They have developed a glycopolymer-based ultraviolet-visible (UV-vis) test to detect Western Diamondback Rattlesnake (Crotalus atrox) venom. This new assay is a cheap and rapid alternative to antibody-based approaches, showcasing a version that specifically detects Crotalus atrox venom.

Dr. Alex Baker, lead researcher of the Baker Humanitarian Chemistry Group, explained that snake venoms are complex, making it challenging to detect toxins in the body. However, their research has produced an assay using synthetic sugars that mimic the natural sugar receptors targeted by venom proteins. The team engineered synthetic chains of sugar-like units (glycopolymers) attached to gold nanoparticles to amplify the response and make the reaction visible.

The Western Diamondback Rattlesnake venom binds to specific sugar molecules on red blood cells and platelets, disrupting blood clotting or interfering with immune responses leading to disability and death. The new assay changes color when venom toxins bind to the synthetic sugars, providing a rapid and cheap detection method beyond antibody-based techniques.

Mahdi Hezwani, first author of the research paper, emphasized that this assay could be a game-changer for snake envenomation. The team tested venom from other snake species, such as the Indian Cobra (Naja naja), and found that it did not interact with glycans in the body. This suggests that the new assay may have potential to distinguish between different snake venoms based on their sugar-binding properties.

This is the first example of a diagnosis test using sugars for detecting snake venom in a rapid detection system, building on the work of the Warwick research group using a glyconanoparticle platform in COVID-19 detection. The new assay is faster, cheaper, and easier to store, making it a more practical solution for treating snake bites.

The University of Warwick’s STEM Connect programme has enabled this innovative research, demonstrating the potential for bold and innovative solutions in addressing global health challenges.

Continue Reading

Trending