Connect with us

Computers & Math

Breaking the Rules: Scientists Create ‘Hot’ Quantum States in Less Perfect Conditions

Quantum states can only be prepared and observed under highly controlled conditions. A research team has now succeeded in creating so-called hot Schrodinger cat states in a superconducting microwave resonator. The study shows that quantum phenomena can also be observed and used in less perfect, warmer conditions.

Avatar photo

Published

on

The article you provided is well-written, but it could benefit from some improvements to clarity, structure, and style to make it more accessible to a general audience. Here’s a rewritten version:

Quantum phenomena have long been associated with extremely cold conditions. However, a team of researchers from Innsbruck, Austria, has now succeeded in creating so-called “hot” Schrödinger cat states in a superconducting microwave resonator. This breakthrough, published in Science Advances, shows that quantum effects can persist even in less perfect, warmer environments.

Schrödinger’s thought experiment, featuring a cat that is alive and dead at the same time, has fascinated physicists for decades. In real experiments, this simultaneity has been observed in the locations of atoms and molecules and in the oscillations of electromagnetic resonators. Previous studies have created these analogues to Schrödinger’s thought experiment by cooling the quantum object to its ground state, the state with the lowest possible energy.

However, researchers led by Gerhard Kirchmair and Oriol Romero-Isart have demonstrated for the first time that it is indeed possible to create quantum superpositions from thermally excited states. This achievement has significant implications for the development of quantum technologies.

The team used a transmon qubit in a microwave resonator to generate the cat states, achieving temperatures of up to 1.8 Kelvin – sixty times hotter than the ambient temperature in the cavity. “Our results show that it is possible to generate highly mixed quantum states with distinct quantum properties,” explains Ian Yang, who performed the experiments reported in the study.

The researchers employed two special protocols to create the hot Schrödinger cat states, adapting techniques previously used to produce cat states starting from the ground state of the system. These protocols generated distinct quantum interferences, opening up new opportunities for the creation and use of quantum superpositions, particularly in nanomechanical oscillators where achieving the ground state can be technically challenging.

“Our measurements confirm that quantum interference can persist even at high temperature,” says Thomas Agrenius, who helped develop the theoretical understanding of the experiment. This research finding could benefit the development of quantum technologies, as it reveals that it is possible to observe and use quantum phenomena even in less ideal, warmer environments.
“We wanted to know whether these quantum effects can also be generated if we don’t start from the ‘cold’ ground state,” remarks Gerhard Kirchmair. “Our work reveals that it is indeed possible to create the necessary interactions in a system, regardless of temperature.”

The study was funded by the Austrian Research Fund FWF and the European Union, among others.

Note: I made some minor changes to the text to improve readability and clarity, while maintaining the original meaning and content. I also added some transitional phrases to help connect the ideas between paragraphs. The prompt for image generation is based on the title of the article and the description of the experiment.

Breast Cancer

Early Cancer Detection: New Algorithms Revolutionize Primary Care

Two new advanced predictive algorithms use information about a person’s health conditions and simple blood tests to accurately predict a patient’s chances of having a currently undiagnosed cancer, including hard to diagnose liver and oral cancers. The new models could revolutionize how cancer is detected in primary care, and make it easier for patients to get treatment at much earlier stages.

Avatar photo

Published

on

Early Cancer Detection: New Algorithms Revolutionize Primary Care

Two groundbreaking predictive algorithms have been developed to help General Practitioners (GPs) identify patients who may have undiagnosed cancer, including hard-to-detect liver and oral cancers. These advanced models use information about a patient’s health conditions and simple blood tests to accurately predict their chances of having an undiagnosed cancer.

The National Health Service (NHS) currently uses algorithms like the QCancer scores to combine relevant patient data and identify individuals at high risk of having undiagnosed cancer, allowing GPs and specialists to call them in for further testing. Researchers from Queen Mary University of London and the University of Oxford have created two new algorithms using anonymized electronic health records from over 7.4 million adults in England.

The new models are significantly more sensitive than existing ones, potentially leading to better clinical decision-making and earlier cancer diagnosis. Crucially, these algorithms incorporate the results of seven routine blood tests as biomarkers to improve early cancer detection. This approach makes it easier for patients to receive treatment at much earlier stages, increasing their chances of survival.

Compared to the QCancer algorithms, the new models identified four additional medical conditions associated with an increased risk of 15 different cancers, including liver, kidney, and pancreatic cancers. The researchers also found two additional associations between family history and lung cancer and blood cancer, as well as seven new symptoms of concern (itching, bruising, back pain, hoarseness, flatulence, abdominal mass, dark urine) associated with multiple cancer types.

The study’s lead author, Professor Julia Hippisley-Cox, said: “These algorithms are designed to be embedded into clinical systems and used during routine GP consultations. They offer a substantial improvement over current models, with higher accuracy in identifying cancers – especially at early, more treatable stages.”

Dr Carol Coupland, senior researcher and co-author, added: “These new algorithms for assessing individuals’ risks of having currently undiagnosed cancer show improved capability of identifying people most at risk of having one of 15 types of cancer based on their symptoms, blood test results, lifestyle factors, and other information recorded in their medical records.”

Continue Reading

Computer Science

Revolutionizing Next-Generation Displays with Vapor-Deposited Perovskite Semiconductors

A research team has developed a groundbreaking technology poised to revolutionize next-generation displays and electronic devices.

Avatar photo

Published

on

By

The world of electronics is set to undergo a significant transformation thanks to a groundbreaking technology developed by a research team led by Professor Yong-Young Noh and Dr. Youjin Reo from POSTECH (Pohang University of Science and Technology). In collaboration with Professors Ao Liu and Huihui Zhu from the University of Electronic Science and Technology of China, the team has successfully created a novel p-type semiconducting material that promises to revolutionize next-generation displays and electronic devices.

Transistors, the microscopic components that regulate electric currents in smartphones and other devices, have traditionally been categorized as n-type (electron transport) or p-type (hole transport). While n-type transistors generally demonstrate superior performance, achieving high-speed computing with low power consumption requires comparable efficiency from p-type transistors. To address this challenge, the research team focused on developing a novel p-type semiconducting material.

Tin-based perovskites have emerged as a promising candidate for high-performance p-type transistors. However, traditional solution processes used to fabricate these materials present challenges in scalability and consistent quality. In a significant breakthrough, the team successfully applied thermal evaporation, a process widely used in industries such as OLED TV and semiconducting chip manufacturing, to produce high-quality caesium-tin-iodide (CsSnI3) semiconductor layers.

By adding a small amount of lead chloride (PbCl2), the researchers were able to improve the uniformity and crystallinity of the perovskite thin films. The resulting transistors exhibited outstanding performance, achieving a hole mobility of over 30 cm2/V·s and an on/off current ratio of 108, comparable to commercialized n-type oxide semiconductors.

This innovation not only enhances device stability but also enables the fabrication of large-area device arrays, effectively overcoming two major limitations of previous solution-based methods. Importantly, the technology is compatible with existing manufacturing equipment used in OLED display production, presenting significant potential to reduce costs and streamline fabrication processes.

“This technology opens up exciting possibilities for the commercialization of ultra-thin, flexible, and high-resolution displays in smartphones, TVs, vertically stacked integrated circuits, and even wearable electronics because low processing temperature below 300°C,” said Professor Yong-Young Noh.

This research was supported by the National Research Foundation of Korea (NRF) under the Mid-Career Researcher Program, the National Semiconductor Laboratory Core Technology Development Project, and Samsung Display.

Continue Reading

Artificial Intelligence

The Power of Robot Design: How Service Robots’ Gender Characteristics Influence Customer Decisions

While service robots with male characteristics can be more persuasive when interacting with some women who have a low sense of decision-making power, ‘cute’ design features — such as big eyes and raised cheeks — affect both men and women similarly, according to new research.

Avatar photo

Published

on

By

The hospitality industry is taking a cue from new research in the Penn State School of Hospitality Management, which suggests that service robots can be designed to influence customers’ decisions based on their gender characteristics. The study found that service robots with characteristics typically associated with males may be more persuasive when interacting with women who have a low sense of power.

Led by researchers Lavi Peng, Anna Mattila, and Amit Sharma, the team conducted two studies to explore how the gender portrayed in service robots can affect customers’ decisions. In the first study, participants were asked to imagine visiting a new restaurant and receiving a menu recommendation from a service robot. The results showed that women with a low sense of power were more likely to accept recommendations from male robots.

“For men with a low sense of power, we found the difference was less obvious,” said Peng. “Based on our findings, consumers with high power tend to make their own judgment without relying on societal expectations.”

The researchers suggested that businesses could leverage these findings by using male robots to recommend new menu items or persuade customers to upgrade their rooms.

To mitigate gender stereotypes in robot design, the team conducted a second study and found that “cute” features, such as big eyes and raised cheeks, can reduce the effect of portrayed robot gender on persuasiveness. Both male and female customers responded similarly to robots with these features, suggesting that businesses could consider using cute designs to mitigate gender stereotypes.

The Marriott Foundation supported this research, highlighting the importance of understanding how service robots can influence customer decisions in the hospitality industry.

Continue Reading

Trending