Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Earth & Climate

Defending the Earth: Ecuador’s Groundbreaking Rights of Nature Lawsuit

The study highlights the transformative potential of the Rights of Nature, which views nature as a rights-bearing entity, not merely an object of regulation and subjugation by extractive industries. The Llurimagua case — a dispute over a mining concession in Ecuador’s cloud forest — illustrates this approach, providing a unique opportunity to rethink Earth system governance.

Avatar photo

Published

on

In a groundbreaking move, scientists at the University of Vermont, along with international co-authors, have published a paper outlining Ecuador’s successes in legally championing the Rights of Nature. The paper, titled “Frogs, Coalitions, and Mining: Transformative Insights for Planetary Health and Earth System Law from Ecuador’s Struggle to Enforce Nature’s Rights,” appears in Earth System Governance’s special issue on “Locating the ‘Global South’ in Earth System Governance.”

Ecuadorian frogs might seem unlikely superheroes, yet these small spotted amphibians emerged victorious against a Goliath of mining concessions in Ecuador. Like most superheroes, the frogs had help from a team of strong allies. In this case, members of the Junin community, along biologists, lawyers, and other allies, successfully sued on Nature’s behalf to halt mining activities. The Resistance Rocket Frog — Rana Cohete Resistencia — was named by the people of Intag, to symbolize their collective struggle to defend their territory.

Ecuador’s enshrinement of the Rights of Nature within its Constitution in 2008 represents a monumental shift in rights and jurisprudence. Ecuador’s constitution establishes Nature as a subject with inherent rights. It embeds humans within ecological processes and emphasizes care, stewardship, and the equitable coexistence of all life forms.

To date, sustained legal and community efforts have successfully blocked three large mining projects in Intag, while the Rights of Nature have prevailed in half a dozen landmark court cases across Ecuador. Resistance to mining in Intag Valley, a biodiversity hotspot, exemplifies the power of community action and international solidarity in pursuing planetary health equity and justice, and a just transition for all.

Andrea Terán, an Ecuadorian biologist providing data and research to support the case and a co-author of the paper, believes the Rights of Nature approach is what led to this environmental success. “Translating the Constitutional Rights of Nature into concrete conservation measures is a powerful tool to prevent species extinction in areas threatened by mining.”

Dr. Mario Moncayo, part of the team of sponsoring attorneys in the Llurimagua mining case, described their legal victory this way: “In the case of Llurimagua, as explained in the article, the practical applicability of the rights of Nature is demonstrated, showing that these are not merely symbolic declarations but rights with real-world legal effects.”

The paper outlines three critical dimensions of successful Rights of Nature laws:

1. The recognition of Nature’s inherent rights: This approach acknowledges the intrinsic value of ecosystems and establishes a framework for their protection.
2. Community-led conservation: By involving local communities in decision-making processes, Ecuador has successfully implemented conservation efforts that prioritize the well-being of both humans and nature.
3. Global governance mechanisms: The Rights of Nature framework can serve as a model for international cooperation and the development of new governance structures that prioritize ecological justice.

The paper proposes next steps to scale the Rights of Nature framework and offers specific recommendations for policy reforms and governance models. Rights of Nature victories have inspired legal innovations globally, with countries such as Bolivia, New Zealand, and India adopting similar approaches.

Signed by Ecuador and 22 other Latin American countries, The Escazú Agreement (2020) stands out as a critical governance tool for advancing environmental and ecological justice. However, despite its entry into force in April 2021, violence persists; 2,100 nature defenders were killed globally, and 70% of these murders occurred in four Latin American countries in 2023 (Global Witness, 2024).

Lead author and UVM Research Assistant Professor Dr. Carlos Andres Gallegos-Riofrío discusses the governance implications: “A key lesson — especially the coalition that advanced the Llurimagua case — is that there are real alternatives for governing the Earth system. These alternatives, to become truly transformative, need society must active engagement. Only then can they serve as critical tools to help local communities stop activities that harm both people and Nature, globally prevent us from continuing to cross the planet’s safe operating boundaries.”

Dr. Amaya Carrasco Torrontegui, senior author and the other UVM affiliate, describes the policy impact this way: “The Rights of Nature is a strong and inspiring idea that started in Ecuador. This approach encourages us to see Nature not just as a resource, but as something alive and deserving of care — drawing on Indigenous wisdom and the idea of Pachamama, or Mother Earth.”

Air Quality

Greenland’s Glacial Runoff Fuels Explosive Growth in Ocean Life

NASA-backed simulations reveal that meltwater from Greenland’s Jakobshavn Glacier lifts deep-ocean nutrients to the surface, sparking large summer blooms of phytoplankton that feed the Arctic food web.

Avatar photo

Published

on

Greenland’s glacial runoff is fueling an explosion in ocean life, according to a recent study supported by NASA. As the ice sheet melts, it releases massive amounts of freshwater into the sea, which then interacts with the surrounding saltwater and nutrients from the depths.

The researchers used a state-of-the-art computer model called Estimating the Circulation and Climate of the Ocean-Darwin (ECCO-Darwin) to simulate the complex interactions between biology, chemistry, and physics in one pocket along Greenland’s coastline. The study revealed that glacial runoff delivers nutrients like iron and nitrate, essential for phytoplankton growth, to the surface waters.

Phytoplankton are tiny plant-like organisms that form the base of the ocean food web. They take up carbon dioxide and produce oxygen as byproducts of photosynthesis. In Arctic waters, their growth rate has surged 57% between 1998 and 2018 alone. The study found that glacial runoff boosts summertime phytoplankton growth by 15 to 40% in the study area.

Increased phytoplankton blooms can have a positive impact on Greenland’s marine animals and fisheries. However, untangling the impacts of climate change on the ecosystem will take time and further research. The team plans to extend their simulations to the whole Greenland coast and beyond.

The study also highlights the interconnectedness of the ocean ecosystem, with phytoplankton blooms influencing the carbon cycle both positively and negatively. While glacial runoff makes seawater less able to dissolve carbon dioxide, the bigger blooms of phytoplankton take up more carbon dioxide from the air as they photosynthesize, offsetting this loss.

The researchers emphasize that their approach is applicable to any region, making it a powerful tool for studying ocean ecosystems worldwide. As climate change continues to reshape our planet, understanding these complex interactions will be essential for predicting and mitigating its impacts on marine life and ecosystems.

Continue Reading

Atmosphere

NASA’s SWOT Satellite Captures Kamchatka Megaquake Tsunami in Stunning Detail

When a massive 8.8 magnitude earthquake struck off Russia’s Kamchatka Peninsula, NASA and CNES’s SWOT satellite captured a rare and detailed picture of the tsunami that followed. Recorded just over an hour after the quake, the satellite revealed the wave’s height, shape, and path, offering scientists an unprecedented multidimensional view from space.

Avatar photo

Published

on

The recent megaquake that struck off the coast of Russia’s Kamchatka Peninsula has been captured in striking detail by NASA’s SWOT satellite. Launched jointly with the French space agency CNES, the SWOT satellite is equipped with a unique radar system that can measure ocean topography and water levels across vast areas.

On July 30, at around 11:25 a.m. local time, an 8.8 magnitude earthquake struck off the coast of Kamchatka, generating a massive tsunami wave. The SWOT satellite captured the leading edge of this tsunami just 70 minutes after the quake hit. This remarkable footage has provided scientists with crucial data to improve tsunami forecast models.

The data collected by the SWOT satellite included measurements of the wave height exceeding 1.5 feet (45 centimeters), as well as a detailed look at the shape and direction of travel of the leading edge of the tsunami. These observations have been plotted against a forecast model produced by the U.S. National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research.

Comparing these observations to the model helps forecasters validate their predictions, ensuring that they can provide accurate early warnings to coastal communities in the event of a tsunami. As Nadya Vinogradova Shiffer, NASA Earth lead and SWOT program scientist at NASA Headquarters, explained, “The power of SWOT’s broad, paintbrush-like strokes over the ocean is in providing crucial real-world validation, unlocking new physics, and marking a leap towards more accurate early warnings and safer futures.”

Ben Hamlington, an oceanographer at NASA’s Jet Propulsion Laboratory, highlighted the significance of the 1.5-foot-tall wave captured by SWOT, saying that what might seem like a small wave in open waters can become a massive 30-foot wave in shallower coastal areas.

The data collected by the SWOT satellite has already helped scientists improve their tsunami forecast models at NOAA’s Center for Tsunami Research. This is a crucial step towards enhancing operational tsunami forecasts and saving lives. As Josh Willis, a JPL oceanographer, noted, “The satellite observations help researchers to better reverse engineer the cause of a tsunami, and in this case, they also showed us that NOAA’s tsunami forecast was right on the money.”

This breakthrough has significant implications for coastal communities around the world. By providing more accurate early warnings, SWOT data can save lives and reduce damage caused by tsunamis. As Vasily Titov, the center’s chief scientist in Seattle, emphasized, “It suggests SWOT data could significantly enhance operational tsunami forecasts — a capability sought since the 2004 Sumatra event.” The devastating tsunami generated by that quake killed thousands of people and caused widespread destruction in Indonesia.

The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA JPL leads the U.S. component of the project, providing a Ka-band radar interferometer instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.

This groundbreaking technology has opened up new possibilities for scientists to better understand ocean dynamics and improve tsunami forecasting models. As SWOT continues to capture stunning images of our oceans, it will undoubtedly play a vital role in enhancing operational tsunami forecasts and saving lives around the world.

Continue Reading

Climate

The Ocean’s Fragile Fortresses: Uncovering the Impact of Climate Change on Bryozoans

Mediterranean bryozoans, including the “false coral,” are showing alarming changes in structure and microbiomes under acidification and warming. Field studies at volcanic CO₂ vents reveal that these stressors combined sharply reduce survival, posing risks to marine ecosystems.

Avatar photo

Published

on

The Ocean’s Fragile Fortresses: Uncovering the Impact of Climate Change on Bryozoans

Bryozoans, small colonial invertebrates, play a vital role in forming marine habitats. However, their response to environmental changes has long been overlooked. A recent study published in Communications Biology sheds light on how ocean acidification and warming can affect bryozoan colonies, with crucial implications for marine conservation.

The researchers from the Institut de Ciències del Mar (ICM-CSIC) used a natural laboratory on the island of Ischia, Italy, to simulate the conditions projected for the end of the century. They analyzed the morphology, skeleton mineralogy, and microbiome of two bryozoan species exposed to these conditions. The findings revealed that the species exhibit some acclimation capacity, modifying their skeletal mineralogy to become more resistant.

However, a loss in functional microbial diversity was observed, with a decline in genera potentially involved in key processes such as nutrition, defense, or resistance to environmental stress. This suggests that even if colonies look externally healthy, changes in the microbiome could serve as early bioindicators of environmental stress.

The study also considered the effects of rising temperatures, another key factor in climate change. The models used indicate that the combination of these two stressors intensifies the effects observed, significantly reducing the coverage of the encrusting bryozoan and increasing mortality.

These findings have important implications for marine conservation. Habitat-forming species like bryozoans are not only vulnerable but their disappearance could trigger cascading effects on many other species that rely on them for shelter or food. The characterization of the microbiome and preliminary identification of potentially beneficial microorganisms open new research avenues to enhance the resilience of holobionts (host and its associated microbiome) through nature-based approaches.

The complexity of this issue demands integrated analyses, highlighting the importance of interdisciplinary approaches in anticipating future scenarios and protecting marine ecosystems.

Continue Reading

Trending