While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.
Energy and Resources
Harnessing Energy Efficiency: A Revolutionary Method to Control Magnetism Without Magnets
In a leap toward greener tech, researchers at the Paul Scherrer Institute have discovered a way to control magnetic textures using electric fields no bulky magnets needed. Their star material? A strange crystal called copper oxyselenide, where magnetic patterns like helices and cones swirl at low temperatures. By zapping it with different electric fields, they could bend, twist, and even flip these patterns a first in the world of magnetoelectrics. This opens the door to ultra-efficient data storage, sensors, and computing, all while saving tons of energy.

Chemistry
Defying Physics: Atacamite’s Rare Magnetic Cooling Property
Deep in Chile’s Atacama Desert, scientists studied a green crystal called atacamite—and discovered it can cool itself dramatically when placed in a magnetic field. Unlike a regular fridge, this effect doesn’t rely on gases or compressors. Instead, it’s tied to the crystal’s unusual inner structure, where tiny magnetic forces get tangled in a kind of “frustration.” When those tangled forces are disrupted by magnetism, the crystal suddenly drops in temperature. It’s a strange, natural trick that could someday help us build greener, more efficient ways to cool things.
Automotive and Transportation
A Breakthrough in Ammonia Production: Harnessing Human-Made Lightning for Sustainable Fertilizers
Australian scientists have discovered a method to produce ammonia—an essential component in fertilizers—using only air and electricity. By mimicking lightning and channeling that energy through a small device, they’ve bypassed the traditional, fossil fuel-heavy method that’s been used for over a century. This breakthrough could lead to cleaner, cheaper fertilizer and even help power the future, offering a potential alternative fuel source for industries like shipping.
Chemistry
Mapping Platinum Atoms for a Greener Future in Catalysis
A precious metal used everywhere from car exhaust systems to fuel cells, platinum is an incredibly efficient catalyst—but it’s costly and carbon-intensive. Now, a serendipitous collaboration between scientists at ETH Zurich and other European institutions has opened a new frontier in understanding and optimizing platinum-based catalysts at the atomic level.
-
Detectors3 months ago
A New Horizon for Vision: How Gold Nanoparticles May Restore People’s Sight
-
Earth & Climate4 months ago
Retiring Abroad Can Be Lonely Business
-
Cancer4 months ago
Revolutionizing Quantum Communication: Direct Connections Between Multiple Processors
-
Agriculture and Food4 months ago
“A Sustainable Solution: Researchers Create Hybrid Cheese with 25% Pea Protein”
-
Diseases and Conditions4 months ago
Reducing Falls Among Elderly Women with Polypharmacy through Exercise Intervention
-
Albert Einstein4 months ago
Harnessing Water Waves: A Breakthrough in Controlling Floating Objects
-
Earth & Climate4 months ago
Household Electricity Three Times More Expensive Than Upcoming ‘Eco-Friendly’ Aviation E-Fuels, Study Reveals
-
Chemistry3 months ago
“Unveiling Hidden Patterns: A New Twist on Interference Phenomena”