Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computer Modeling

Harnessing True Randomness from Entangled Photons: The Colorado University Randomness Beacon (CURBy)

Scientists at NIST and the University of Colorado Boulder have created CURBy, a cutting-edge quantum randomness beacon that draws on the intrinsic unpredictability of quantum entanglement to produce true random numbers. Unlike traditional methods, CURBy is traceable, transparent, and verifiable thanks to quantum physics and blockchain-like protocols. This breakthrough has real-world applications ranging from cybersecurity to public lotteries—and it’s open source, inviting the world to use and build upon it.

Avatar photo

Published

on

The Colorado University Randomness Beacon (CURBy) is a pioneering service that harnesses the true randomness of entangled photons to produce unguessable strings of numbers. This breakthrough was made possible by the work of scientists at the National Institute of Standards and Technology (NIST) and their colleagues at the University of Colorado Boulder.

“True randomness is something that nothing in the universe can predict in advance,” said Krister Shalm, a physicist at NIST. “If God does play dice with the universe, then you can turn that into the best random number generator that the universe allows.”

The CURBy system uses a Bell test to measure pairs of entangled photons whose properties are correlated even when separated by vast distances. When researchers measure an individual particle, the outcome is random, but the properties of the pair are more correlated than classical physics allows, enabling researchers to verify the randomness.

This is the first random number generator service to use quantum nonlocality as a source of its numbers, and the most transparent source of random numbers to date. The results are certifiable and traceable to a greater extent than ever before.

The CURBy system consists of a nonlinear crystal that generates entangled photons, which travel via optical fiber to separate labs at opposite ends of the hall. Once the photons reach the labs, their polarizations are measured. The outcomes of these measurements are truly random.

NIST passes millions of these quantum coin flips to a computer program at the University of Colorado Boulder, where special processing steps and strict protocols are used to turn the outcomes into 512 random bits of binary code (0s and 1s). The result is a set of random bits that no one, not even Einstein, could have predicted.

The CURBy system has been operational for several months now, with an impressive success rate of over 99.7%. The ability to verify the data behind each random number was made possible by the Twine protocol, a novel set of quantum-compatible blockchain technologies developed by NIST and its collaborators.

“The Twine protocol lets us weave together all these other beacons into a tapestry of trust,” said Jasper Palfree, a research assistant on the project at the University of Colorado Boulder. This allows any user to verify the data behind each random number, providing security and traceability.

The CURBy system can be used anywhere an independent, public source of random numbers would be useful, such as selecting jury candidates, making a random selection for an audit, or assigning resources through a public lottery.

“I wanted to build something that is useful. It’s this cool thing that is the cutting edge of fundamental science,” said Gautam Kavuri, a graduate student on the project. The whole process is open source and available to the public, allowing anyone to not only check their work but even build on the beacon to create their own random number generator.

The CURBy system has the potential to revolutionize fields such as cryptography, gaming, and finance, where true randomness is essential. By harnessing the power of entangled photons, scientists have created a truly independent source of random numbers that can be trusted.

Computer Modeling

Unveiling the Hidden Power of Quantum Computers: Scientists Discover Forgotten Particle that Could Unlock Universal Computation

Scientists may have uncovered the missing piece of quantum computing by reviving a particle once dismissed as useless. This particle, called the neglecton, could give fragile quantum systems the full power they need by working alongside Ising anyons. What was once considered mathematical waste may now hold the key to building universal quantum computers, turning discarded theory into a pathway toward the future of technology.

Avatar photo

Published

on

By

The discovery of the “neglecton” particle, previously discarded in traditional approaches to topological quantum computation, has brought scientists closer to unlocking the full power of quantum computers. This new anyon emerges naturally from a broader mathematical framework and provides exactly the missing ingredient needed to complete the computational toolkit.

In a study published in Nature Communications, a team of mathematicians and physicists led by Aaron Lauda, professor of mathematics, physics, and astronomy at the USC Dornsife College of Letters, Arts, and Sciences, has demonstrated that Ising anyons can be made universal through braiding alone when combined with the newly discovered neglecton particle.

The breakthrough illustrates how abstract mathematics can solve concrete engineering problems in unexpected ways. By embracing mathematical structures previously considered useless, researchers have unlocked a whole new chapter for quantum information science.

“This work moves us closer to universal quantum computing with particles we already know how to create,” Lauda said. “The math gives a clear target: If experimentalists can find a way to realize this extra stationary anyon, it could unlock the full power of Ising-based systems.”

The research opens new directions both in theory and in practice, with mathematicians working to extend their framework to other parameter values and clarify the role of unitarity in non-semisimple TQFTs. Experimentalists aim to identify specific material platforms where the stationary neglecton could arise and develop protocols that translate their braiding-based approach into realizable quantum operations.

The study was supported by National Science Foundation Grants, Army Research Office Grants, Simons Foundation Collaboration Grant, and PSC CUNY Enhanced Award. The team of researchers includes Filippo Iulianelli, Sung Kim, and Joshua Sussan, among others.

In conclusion, the discovery of the neglecton particle has brought scientists closer to unlocking the full power of quantum computers, offering new directions in theory and practice, and highlighting the potential for abstract mathematics to solve concrete engineering problems.

Continue Reading

Computer Graphics

Cracking the Code: Scientists Breakthrough in Quantum Computing with a Single Atom

A research team has created a quantum logic gate that uses fewer qubits by encoding them with the powerful GKP error-correction code. By entangling quantum vibrations inside a single atom, they achieved a milestone that could transform how quantum computers scale.

Avatar photo

Published

on

By

Scientists have achieved a major breakthrough in quantum computing by successfully cracking the code hidden within a single atom. To build a large-scale quantum computer that works, scientists and engineers need to overcome the spontaneous errors that quantum bits, or qubits, create as they operate.

The team at the Quantum Control Laboratory at the University of Sydney Nano Institute has demonstrated a type of quantum logic gate that drastically reduces the number physical qubits needed for its operation. They built an entangling logic gate on a single atom using an error-correcting code nicknamed the ‘Rosetta stone’ of quantum computing.

This curiously named Gottesman-Kitaev-Preskill (GKP) code has long offered a theoretical possibility for significantly reducing the physical number of qubits needed to produce a functioning ‘logical qubit.’ Albeit by trading efficiency for complexity, making the codes very difficult to control. The research published in Nature Physics demonstrates this as a physical reality.

Led by Sydney Horizon Fellow Dr Tingrei Tan at the University of Sydney Nano Institute, scientists have used their exquisite control over the harmonic motion of a trapped ion to bridge the coding complexity of GKP qubits, allowing a demonstration of their entanglement.

The team’s experiment has shown the first realization of a universal logical gate set for GKP qubits. They did this by precisely controlling the natural vibrations or harmonic oscillations of a trapped ion in such a way that they can manipulate individual GKP qubits or entangle them as a pair.

A logic gate is an information switch that allows computers – quantum and classical – to be programmable to perform logical operations. Quantum logic gates use the entanglement of qubits to produce a completely different sort of operational system to that used in classical computing, underpinning the great promise of quantum computers.

The researchers have effectively stored two error-correctable logical qubits in a single trapped ion and demonstrated entanglement between them using quantum control software developed by Q-CTRL. This result massively reduces the quantum hardware required to create these logic gates, which allow quantum machines to be programmed.

This research represents an important demonstration that quantum logic gates can be developed with a reduced physical number of qubits, increasing their efficiency. The authors declare no competing interests. Funding was received from various sources including the Australian Research Council and private funding from H. and A. Harley.

Continue Reading

Civil Engineering

A Groundbreaking Magnetic Trick for Quantum Computing: Stabilizing Qubits with Exotic Materials

Researchers have unveiled a new quantum material that could make quantum computers much more stable by using magnetism to protect delicate qubits from environmental disturbances. Unlike traditional approaches that rely on rare spin-orbit interactions, this method uses magnetic interactions—common in many materials—to create robust topological excitations. Combined with a new computational tool for finding such materials, this breakthrough could pave the way for practical, disturbance-resistant quantum computers.

Avatar photo

Published

on

By

The article you provided was well-written, but I made some adjustments to improve clarity, structure, and style for general readers. Here’s the rewritten content:

A Groundbreaking Magnetic Trick for Quantum Computing: Stabilizing Qubits with Exotic Materials

Quantum computers have long been touted as revolutionaries in solving complex problems that conventional supercomputers can’t handle. However, their development has been hindered by one major challenge: qubits, the basic units of quantum computers, are extremely delicate and prone to losing their quantum states due to external disturbances.

Researchers from Chalmers University of Technology in Sweden and Aalto University and the University of Helsinki in Finland have now made a groundbreaking discovery that could change this. They’ve developed a new type of exotic quantum material that exhibits robust topological excitations, which are significantly more stable and resilient than other quantum states.

This breakthrough is an important step towards realising practical topological quantum computing by constructing stability directly into the material’s design. The researchers’ innovative approach uses magnetism as the key ingredient to achieve this effect, harnessing magnetic interactions to engineer robust topological excitations in a broader spectrum of materials.

“The advantage of our method is that magnetism exists naturally in many materials,” explains Guangze Chen, postdoctoral researcher in applied quantum physics at Chalmers and lead author of the study published in Physical Review Letters. “You can compare it to baking with everyday ingredients rather than using rare spices. This means that we can now search for topological properties in a much broader spectrum of materials, including those that have previously been overlooked.”

To accelerate the discovery of new materials with useful topological properties, the research team has also developed a new computational tool that can directly calculate how strongly a material exhibits topological behavior.

“Our hope is that this approach can help guide the discovery of many more exotic materials,” says Guangze Chen. “Ultimately, this can lead to next-generation quantum computer platforms, built on materials that are naturally resistant to the kind of disturbances that plague current systems.”

This magnetic trick has the potential to revolutionize the development of practical topological quantum computing and pave the way for next-generation quantum computer platforms. As researchers continue to explore and develop new exotic materials with robust topological excitations, we may finally see the dawn of a new era in quantum computing.

Continue Reading

Trending