Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Artificial Intelligence

Revolutionizing Electronics: Scientists Discover Class of Crystals with Unprecedented Properties

Researchers have discovered a new class of materials — called intercrystals — with unique electronic properties that could power future technologies. Intercrystals exhibit newly discovered forms of electronic properties that could pave the way for advancements in more efficient electronic components, quantum computing and environmentally friendly materials, the scientists said.

Avatar photo

Published

on

Rutgers University-New Brunswick researchers have made a groundbreaking discovery in the field of materials science, unveiling a new class of crystals with extraordinary electronic properties that could revolutionize future technologies. Dubbed “intercrystals,” these novel materials exhibit unique forms of electronic behavior, paving the way for advancements in more efficient electronic components, quantum computing, and environmentally friendly electronics.

The researchers stacked two ultrathin layers of graphene, each consisting of a one-atom-thick sheet of carbon atoms arranged in a hexagonal grid. They then twisted them slightly atop a layer of hexagonal boron nitride, creating moiré patterns that significantly altered how electrons moved through the material. This subtle misalignment gave rise to the unique properties of intercrystals.

“Our discovery opens a new path for material design,” said Eva Andrei, lead author of the study and Board of Governors Professor in the Department of Physics and Astronomy at Rutgers School of Arts and Sciences. “Intercrystals give us a new handle to control electronic behavior using geometry alone, without having to change the material’s chemical composition.”

By understanding and controlling the unique properties of electrons in intercrystals, scientists can develop technologies such as more efficient transistors and sensors that previously required a complex mix of materials and processing. The researchers envision an entire electronic circuit where every function is controlled by tuning geometry at the atomic level.

The discovery hinges on a rising technique in modern physics called “twistronics,” where layers of materials are contorted at specific angles to create moiré patterns. These configurations significantly alter the behavior of electrons within the substance, leading to properties that aren’t found in regular crystals.

Electrons are tiny particles that move around in materials and are responsible for conducting electricity. In regular crystals, which possess a repeating pattern of atoms forming a perfectly arranged grid, the way electrons move is well understood and predictable. If a crystal is rotated or shifted by certain angles or distances, it looks the same because of an intrinsic characteristic known as symmetry.

The researchers found that the electronic properties of intercrystals can vary significantly with small changes in their structure. This variability can lead to new and unusual behaviors, such as superconductivity and magnetism, which aren’t typically found in regular crystals. Superconducting materials offer the promise of continuously flowing electrical current because they conduct electricity with zero resistance.

Intercrystals could be a part of the new circuitry for low loss electronics and atomic sensors that could play a part in the making of quantum computers and power new forms of consumer technologies, the scientists said.

The materials also offer the prospect of functioning as the basis of more environmentally friendly electronic technologies. “Because these structures can be made out of abundant, non-toxic elements such as carbon, boron, and nitrogen, rather than rare earth elements, they also offer a more sustainable and scalable pathway for future technologies,” Andrei said.

Rutgers researchers are optimistic about the future applications of intercrystals, opening new possibilities for exploring and manipulating the properties of materials at the atomic level. As Pixley noted, “This is just the beginning… We are excited to see where this discovery will lead us and how it will impact technology and science in the years to come.”

Artificial Intelligence

Self-Powered Artificial Synapse Revolutionizes Machine Vision

Despite advances in machine vision, processing visual data requires substantial computing resources and energy, limiting deployment in edge devices. Now, researchers from Japan have developed a self-powered artificial synapse that distinguishes colors with high resolution across the visible spectrum, approaching human eye capabilities. The device, which integrates dye-sensitized solar cells, generates its electricity and can perform complex logic operations without additional circuitry, paving the way for capable computer vision systems integrated in everyday devices.

Avatar photo

Published

on

By

The human visual system has long been a source of inspiration for computer vision researchers, who aim to develop machines that can see and understand the world around them with the same level of efficiency and accuracy as humans. While machine vision systems have made significant progress in recent years, they still face major challenges when it comes to processing vast amounts of visual data while consuming minimal power.

One approach to overcoming these hurdles is through neuromorphic computing, which mimics the structure and function of biological neural systems. However, two major challenges persist: achieving color recognition comparable to human vision, and eliminating the need for external power sources to minimize energy consumption.

A recent breakthrough by a research team led by Associate Professor Takashi Ikuno from Tokyo University of Science has addressed these issues with a groundbreaking solution. Their self-powered artificial synapse is capable of distinguishing colors with remarkable precision, making it particularly suitable for edge computing applications where energy efficiency is crucial.

The device integrates two different dye-sensitized solar cells that respond differently to various wavelengths of light, generating its electricity via solar energy conversion. This self-powering capability makes it an attractive solution for industries such as autonomous vehicles, healthcare, and consumer electronics, where visual recognition capabilities are essential but power consumption is limited.

The researchers demonstrated the potential of their device in a physical reservoir computing framework, recognizing different human movements recorded in red, green, and blue with an impressive 82% accuracy. This achievement has significant implications for various industries, including autonomous vehicles, which could utilize these devices to efficiently recognize traffic lights, road signs, and obstacles.

In healthcare, self-powered artificial synapses could power wearable devices that monitor vital signs like blood oxygen levels with minimal battery drain. For consumer electronics, this technology could lead to smartphones and augmented/virtual reality headsets with dramatically improved battery life while maintaining sophisticated visual recognition capabilities.

The realization of low-power machine vision systems with color discrimination capabilities close to those of the human eye is within reach, thanks to this breakthrough research. The potential applications of self-powered artificial synapses are vast, and their impact will be felt across various industries in the years to come.

Continue Reading

Artificial Intelligence

Harnessing the Power of AI: Why Leashes are Better than Guardrails for Regulation

Many policy discussions on AI safety regulation have focused on the need to establish regulatory ‘guardrails’ to protect the public from the risks of AI technology. Experts now argue that, instead of imposing guardrails, policymakers should demand ‘leashes.’

Avatar photo

Published

on

By

Harnessing the Power of AI: Why Leashes are Better than Guardrails for Regulation

For years, policymakers have debated the best way to regulate Artificial Intelligence (AI) to prevent its potential risks. A new paper by experts Cary Coglianese and Colton R. Crum proposes a game-changing approach: rather than imposing strict “guardrails” to control AI development, they suggest using flexible “leashes.” This management-based regulation would allow firms to innovate while ensuring public safety.

The authors argue that guardrails are not effective for AI due to its rapidly evolving nature and diverse applications. Social media, chatbots, autonomous vehicles, precision medicine, and fintech investment advisors are just a few examples of how AI is transforming industries. While offering numerous benefits, such as improved cancer detection, AI also poses risks like AV collisions, social media-induced suicides, and bias in digital formats.

Coglianese and Crum provide three case studies illustrating the potential harm from unregulated AI:

1. Autonomous vehicle (AV) crashes
2. Social media-related suicides
3. Bias and discrimination through AI-generated content

In each scenario, firms using AI tools would be expected to put their technology on a leash by implementing internal systems to mitigate potential harms. This flexible approach allows for technological innovation while ensuring that companies are accountable for the consequences of their actions.

Management-based regulation offers several advantages over guardrails:

* It can flexibly respond to AI’s novel uses and problems
* It enables technological exploration, discovery, and change
* It provides a tethered structure that helps prevent AI from “running away”

By embracing this leash-like approach, policymakers can harness the power of AI while minimizing its risks.

Continue Reading

Artificial Intelligence

A Breakthrough in Soft Robotics: Engineers Develop Self-Healing Muscle for Robots

Students recently unveiled their invention of a robotic actuator — the ‘muscle’ that converts energy into a robot’s physical movement — that has the ability to detect punctures or pressure, heal the injury and repair its damage-detecting ‘skin.’

Avatar photo

Published

on

By

The University of Nebraska-Lincoln engineering team has made significant strides in developing soft robotics and wearable systems inspired by human and plant skin’s ability to self-heal injuries. Led by engineer Eric Markvicka, the team presented a groundbreaking paper at the IEEE International Conference on Robotics and Automation that showcased their innovative approach to creating an intelligent, self-healing artificial muscle.

The team’s strategy overcomes the long-standing problem of replicating traditional rigid systems using soft materials and incorporating nature-inspired design principles. Their multi-layer architecture enables the system to identify damage, pinpoint its location, and autonomously initiate a self-repair mechanism – all without external intervention.

The “muscle” or actuator features three layers: a damage detection layer composed of liquid metal microdroplets embedded in silicone elastomer, a self-healing component that uses thermoplastic elastomer to seal the wound, and an actuation layer that kick-starts the muscle’s motion when pressurized with water.

To begin the process, the team induces monitoring currents across the damage detection layer, which triggers formation of an electrical network between traces. Puncture or pressure damage causes this network to form, allowing the system to recognize and respond to the damage.

The next step is using electromigration – a phenomenon traditionally viewed as a hindrance in metallic circuits – to erase the newly formed electrical footprint. By further ramping up the current, the team can induce electromigration and thermal failure mechanisms that reset the damage detection network, effectively completing one cycle of damage and repair.

This breakthrough has far-reaching implications for various industries, particularly in agricultural states where robotics systems frequently encounter sharp objects. It could also revolutionize wearable health monitoring devices that must withstand daily wear and tear.

The technology has the potential to transform society more broadly by reducing electronic waste and mitigating environmental harm caused by consumer-based electronics’ short lifespans. Most consumer electronics have a lifespan of only one or two years, contributing billions of pounds of toxic waste each year.

“If we can begin to create materials that are able to passably and autonomously detect when damage has happened, and then initiate these self-repair mechanisms, it would really be transformative,” Markvicka said.

Continue Reading

Trending