Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Atmosphere

“Saharan Storms Cloud Europe’s Solar Future: The Dark Side of Dust”

New research reveals how Saharan dust impacts solar energy generation in Europe. Dust from North Africa reduces photovoltaic (PV) power output by scattering sunlight, absorbing irradiance, and promoting cloud formation. The study, based on field data from 46 dust events between 2019 and 2023, highlights the difficulty of predicting PV performance during these events. Conventional forecasting tools often fail, so the team suggests integrating real-time dust load data and aerosol-cloud coupling into models for better solar energy scheduling and preparedness.

Avatar photo

Published

on

As Europe’s reliance on solar energy grows to meet climate and energy security targets, a new challenge has emerged: Saharan dust. This atmospheric phenomenon is reducing photovoltaic (PV) electricity generation across the continent and making it harder to predict.

Researchers at the European Geosciences Union General Assembly (EGU25) presented findings that reveal how mineral dust carried on the wind from North Africa is disrupting PV performance and challenging existing forecasting models. The study, “The Shadow of the Wind: Photovoltaic Power Generation under Europe’s Dusty Skies,” used field data from over 46 Saharan dust events between 2019 and 2023 to explore the impact of dust-laden skies on solar power generation.

The Sahara Desert releases billions of tonnes of fine dust into the atmosphere every year, with tens of millions of tonnes reaching European skies. This dust scatters and absorbs sunlight, reducing irradiance at the surface and promoting cloud formation – all of which degrade PV output. Conventional forecasting tools often miss the mark during these events, leading to underperformance and grid instability.

Dr. György Varga and his team recommend integrating near-real-time dust load data and aerosol-cloud coupling into forecasting models. This would enable more reliable scheduling of solar energy and better preparedness for the variability introduced by atmospheric dust. “There’s a growing need for dynamic forecasting methods that account for both meteorological and mineralogical factors,” Varga says.

Beyond atmospheric effects, Saharan dust also has long-term impacts on the physical infrastructure of solar panels, including contamination and erosion – factors that can further reduce efficiency and increase maintenance costs. This research contributes to ongoing efforts in Hungary and the EU to improve climate resilience and renewable energy management, highlighting the importance of considering both short-term and long-term effects of Saharan dust on Europe’s solar future.

Acid Rain

Uncovering the Hidden Trigger Behind Massive Floods

Atmospheric rivers, while vital for replenishing water on the U.S. West Coast, are also the leading cause of floods though storm size alone doesn t dictate their danger. A groundbreaking study analyzing over 43,000 storms across four decades found that pre-existing soil moisture is a critical factor, with flood peaks multiplying when the ground is already saturated.

Avatar photo

Published

on

The West Coast of the United States is no stranger to massive floods caused by atmospheric rivers. These powerful storms bring much-needed moisture to the region, but also pose a significant threat to communities and ecosystems. A new study has shed light on the hidden trigger behind these devastating events: wet soils that cannot absorb more water when a storm hits.

The research, published in the Journal of Hydrometeorology, analyzed over 43,000 atmospheric river storms across 122 watersheds on the West Coast between 1980 and 2023. The findings reveal that flood peaks were 2-4.5 times higher on average when soils were already wet. This means that even weaker storms can generate major floods if their precipitation meets a saturated Earth.

Lead author Mariana Webb, completing her Ph.D. at DRI and the University of Nevada, Reno, explained that flooding from any event is not just a function of storm size and magnitude but also depends on what’s happening on the land surface. The study demonstrates the key role that pre-event soil moisture can have in moderating flood events.

Interestingly, flood magnitudes do not increase linearly as soil moisture increases. There’s a critical threshold of soil moisture wetness above which you start to see much larger flows. This research also untangled the environmental conditions of regions where soil moisture has the largest influence on flooding.

In arid places like California and southwestern Oregon, storms that hit when soils are already saturated are more likely to cause floods. In contrast, in lush Washington and the interior Cascades and Sierra Nevada regions, watersheds tend to have deeper soils and snowpack, leading to a higher water storage capacity. Although soil saturation can still play a role in driving flooding in these areas, accounting for soil moisture is less valuable for flood management because soils are consistently wet or insulated by snow.

The study highlights the importance of integrating land surface conditions into impact assessments for atmospheric rivers. Webb worked with DRI ecohydrologist Christine Albano to produce the research, building on Albano’s extensive expertise studying atmospheric rivers, their risks, and their impacts on the landscape.

While soil saturation is widely recognized as a key factor in determining flood risk, Mari’s work helps to quantify the point at which this level of saturation leads to large increases in flood risk across different areas along the West Coast. Advances in weather forecasting allow us to see atmospheric rivers coming toward the coast several days before they arrive. By combining atmospheric river forecast information with knowledge of how close the soil moisture is to critical saturation levels for a given watershed, we can further improve flood early warning systems.

Increased monitoring in watersheds identified as high-risk, including real-time soil moisture observations, could significantly enhance early warning systems and flood management as atmospheric rivers become more frequent and intense. By tailoring flood risk evaluations to a specific watershed’s physical characteristics and climate, the study could improve flood-risk predictions.

Continue Reading

Atmosphere

Biofilms Hold Key to Stopping Microplastic Build-up in Rivers and Oceans

Where do microplastics really go after entering the environment? MIT researchers discovered that sticky biofilms naturally produced by bacteria play a surprising role in preventing microplastics from accumulating in riverbeds. Instead of trapping the particles, these biofilms actually keep them loose and exposed, making them easier for flowing water to carry away. This insight could help target cleanup efforts more effectively and identify hidden pollution hotspots.

Avatar photo

Published

on

The accumulation of microplastics in our environment is a growing concern. These tiny particles have been found to harm marine life, contaminate food chains, and even enter our own bodies through various pathways. However, predicting where these particles will accumulate and therefore where remediation efforts should focus has been difficult due to the many factors contributing to their dispersal and deposition.

New research from MIT shows that one key factor in determining where microparticles are likely to build up is related to the presence of biofilms. These thin, sticky biopolymer layers are shed by microorganisms and can accumulate on surfaces, including riverbeds or seashores. The study found that when these particles land on sediment infused with biofilms, they are more likely to be resuspended by flowing water and carried away.

The research involved a flow tank with a bottom lined with fine sand, sometimes mixed with biological material simulating natural biofilms. Water mixed with tiny plastic particles was pumped through the tank for three hours, and then the bed surface was photographed under ultraviolet light that caused the plastic particles to fluoresce, allowing a quantitative measurement of their concentration.

The results revealed two different phenomena affecting how much plastic accumulated on the different surfaces. Immediately around the rods simulating above-ground roots, turbulence prevented particle deposition. Additionally, as the amount of simulated biofilms in the sediment bed increased, the accumulation of particles also decreased.

The researchers concluded that the biofilms filled up the spaces between the sand grains, leaving less room for the microparticles to fit in. The particles were more exposed because they penetrated less deeply into the sand grains, making them easier to resuspend and carry away by the flowing water.

This research provides a “nice lens” to offer guidance on where to find microplastic hotspots versus not-so-hot areas. For example, in mangrove ecosystems, microplastics may accumulate preferentially in the outer edges, which tend to be sandy, while the interior zones have sediment with more biofilm. This suggests that the sandy outer regions may be potential hotspots for microplastic accumulation.

The work was supported by Shell International Exploration and Production through the MIT Energy Initiative. While other factors like turbulence or roughness of the bottom surface complicate this, it provides a framework to categorize habitats and prioritize monitoring and protection efforts.

Continue Reading

Atmosphere

Unveiling the Secrets of Earth’s Core: How Solid Rock Flows 3,000 Kilometers Below Us

Beneath Earth s surface, nearly 3,000 kilometers down, lies a mysterious layer where seismic waves speed up inexplicably. For decades, scientists puzzled over this D” layer. Now, groundbreaking experiments by ETH Zurich have finally revealed that solid rock flows at extreme depths, acting like liquid in motion. This horizontal mantle flow aligns mineral crystals called post-perovskite in a single direction, explaining the seismic behavior. It s a stunning leap in understanding Earth s deep inner mechanics, transforming a long-standing mystery into a vivid map of subterranean currents that power volcanoes, earthquakes, and even the magnetic field.

Avatar photo

Published

on

The mysterious zone deep inside the Earth has long been shrouded in uncertainty. For over 50 years, researchers have been puzzled by the strange behavior of earthquake waves in the so-called D” layer, around 2700 kilometers beneath our feet. However, a new study by geoscientists led by Motohiko Murakami, Professor of Experimental Mineral Physics at ETH Zurich, has finally solved this mystery.

Murakami’s team discovered that perovskite, the main mineral of the Earth’s lower mantle, transforms into a new mineral near the D” layer under extreme pressure and high temperatures – so-called “post-perovskite.” This change was initially thought to explain the strange acceleration of seismic waves. However, further research revealed that the phase change alone is not enough to accelerate earthquake waves.

Using sophisticated computer models, Murakami’s team found that depending on the direction in which the post-perovskite crystals point, the hardness of the mineral changes. Only when all the crystals of the mineral point in the same direction can the seismic waves be accelerated – as observed in the D” layer at a depth of 2700 kilometers.

In an unusual laboratory experiment at ETH Zurich, Murakami has now proven that post-perovskite crystals align themselves in the identical direction under enormous pressure and extreme temperatures. This has led to the conclusion that solid mantle rock flows horizontally along the lower edge of the Earth’s mantle, a phenomenon known as mantle convection.

This groundbreaking discovery not only solves the mystery of the D” layer but also opens a window into the dynamics in the depths of the Earth. It is now possible to begin mapping the currents in the Earth’s deepest interior and visualize the invisible motor that drives volcanoes, tectonic plates, and perhaps even the Earth’s magnetic field.

Murakami emphasizes that this discovery shows that the Earth is not only active on the surface but also in motion deep inside. This newfound understanding has significant implications for our comprehension of the Earth’s internal dynamics and its role in shaping the planet’s surface features.

Continue Reading

Trending