Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Uncategorized

Scientists Confirm a Fundamental Quantum Rule for the First Time

Scientists have, for the first time, experimentally proven that angular momentum is conserved even when a single photon splits into two, pushing quantum physics to its most fundamental limits. Using ultra-precise equipment, the team captured this elusive process—comparable to finding a needle in a haystack—confirming a cornerstone law of nature at the photon level.

Avatar photo

Published

on

Scientists at Tampere University and their international collaborators have made a groundbreaking discovery in the field of quantum physics. They have experimentally confirmed that angular momentum is conserved when a single photon is converted into a pair, validating a key principle of physics at the quantum level for the first time. This breakthrough has significant implications for creating complex quantum states useful in computing, communication, and sensing.

In essence, the researchers have tested the conservation laws of rotating objects to see if they also apply to light. They found that when a photon with zero orbital angular momentum is split into two photons, the OAM quanta of both photons must add to zero. This means that if one of the newly generated photons has one OAM quanta, its partner photon must have the opposite, i.e., negative OAM quanta.

The researchers used an extremely stable optical setup and delicate measurements to record enough successful conversions such that they could confirm the fundamental conservation law. They also observed first indications of quantum entanglement in the generated photon pairs, which suggests that the technique can be extended to create more complex photonic quantum states.

This work is not only of fundamental importance but also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways. The researchers plan to improve the overall efficiency of their scheme and develop better strategies for measuring the generated quantum state such that in the future these photonic needles can be found easier in the laboratory haystack.

The confirmation of this fundamental quantum rule opens new possibilities for creating complex quantum states useful in computing, communication, and sensing. It also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways, i.e., in space, time, and polarization.

Continue Reading

Trending