Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Artificial Intelligence

Self-Powered Artificial Synapse Revolutionizes Machine Vision

Despite advances in machine vision, processing visual data requires substantial computing resources and energy, limiting deployment in edge devices. Now, researchers from Japan have developed a self-powered artificial synapse that distinguishes colors with high resolution across the visible spectrum, approaching human eye capabilities. The device, which integrates dye-sensitized solar cells, generates its electricity and can perform complex logic operations without additional circuitry, paving the way for capable computer vision systems integrated in everyday devices.

Avatar photo

Published

on

The human visual system has long been a source of inspiration for computer vision researchers, who aim to develop machines that can see and understand the world around them with the same level of efficiency and accuracy as humans. While machine vision systems have made significant progress in recent years, they still face major challenges when it comes to processing vast amounts of visual data while consuming minimal power.

One approach to overcoming these hurdles is through neuromorphic computing, which mimics the structure and function of biological neural systems. However, two major challenges persist: achieving color recognition comparable to human vision, and eliminating the need for external power sources to minimize energy consumption.

A recent breakthrough by a research team led by Associate Professor Takashi Ikuno from Tokyo University of Science has addressed these issues with a groundbreaking solution. Their self-powered artificial synapse is capable of distinguishing colors with remarkable precision, making it particularly suitable for edge computing applications where energy efficiency is crucial.

The device integrates two different dye-sensitized solar cells that respond differently to various wavelengths of light, generating its electricity via solar energy conversion. This self-powering capability makes it an attractive solution for industries such as autonomous vehicles, healthcare, and consumer electronics, where visual recognition capabilities are essential but power consumption is limited.

The researchers demonstrated the potential of their device in a physical reservoir computing framework, recognizing different human movements recorded in red, green, and blue with an impressive 82% accuracy. This achievement has significant implications for various industries, including autonomous vehicles, which could utilize these devices to efficiently recognize traffic lights, road signs, and obstacles.

In healthcare, self-powered artificial synapses could power wearable devices that monitor vital signs like blood oxygen levels with minimal battery drain. For consumer electronics, this technology could lead to smartphones and augmented/virtual reality headsets with dramatically improved battery life while maintaining sophisticated visual recognition capabilities.

The realization of low-power machine vision systems with color discrimination capabilities close to those of the human eye is within reach, thanks to this breakthrough research. The potential applications of self-powered artificial synapses are vast, and their impact will be felt across various industries in the years to come.

Artificial Intelligence

“Bird-like Flight”: Revolutionizing Drone Technology with the Safety-Assured High-Speed Aerial Robot (SUPER)

Unlike birds, which navigate unknown environments with remarkable speed and agility, drones typically rely on external guidance or pre-mapped routes. However, a groundbreaking development by Professor Fu Zhang and researchers from the Department of Mechanical Engineering of Faculty of Engineering at the University of Hong Kong (HKU), has enabled drones and micro air vehicles (MAVs) to emulate the flight capabilities of birds more closely than ever before.

Avatar photo

Published

on

By

The world of drone technology has taken a significant leap forward with the development of the Safety-Assured High-Speed Aerial Robot (SUPER) by Professor Fu Zhang and his team from the University of Hong Kong. This groundbreaking innovation enables micro air vehicles (MAVs) to fly at high speeds, navigate complex environments, and avoid obstacles as thin as 2.5 millimeters using solely onboard sensors and computing power.

Unlike traditional drones that rely on GPS or pre-mapped routes, SUPER is designed to emulate the flight capabilities of birds, effortlessly dodging branches and obstacles in real-time while racing toward its goal. This “robot bird” can fly at speeds exceeding 20 meters per second, making it an exceptional tool for various applications such as search and rescue, power line inspection, forest monitoring, autonomous exploration, and mapping.

The key to SUPER’s success lies in the sophisticated integration of hardware and software. The lightweight 3D light detection and ranging (LIDAR) sensor is capable of detecting obstacles up to 70 meters away with pinpoint accuracy. This is paired with an advanced planning framework that generates two trajectories during flight: one optimizing speed by venturing into unknown spaces and another prioritizing safety by remaining within known, obstacle-free zones.

By processing LIDAR data directly as point clouds, the system significantly reduces computation time, enabling rapid decision-making even at high velocities. This technology has been tested in various real-life applications, such as the autonomous exploration of ancient sites, and has demonstrated seamless navigation in both indoor and outdoor environments.

“The ability to avoid thin obstacles and navigate tight spaces opens up new possibilities for applications like search and rescue, where every second counts,” said Mr Yunfan Ren, the lead author of the research paper. “SUPER’s robustness in various lighting conditions, including nighttime, makes it a reliable tool for round-the-clock operations.”

The research team envisions a wide range of applications for this innovative technology, including autonomous delivery, power line inspection, forest monitoring, autonomous exploration, and mapping. In search and rescue missions, MAVs equipped with SUPER technology could swiftly navigate disaster zones – such as collapsed buildings or dense forests – day and night, locating survivors or assessing hazards more efficiently than current drones. Moreover, in disaster relief scenarios, they could deliver crucial supplies to remote and inaccessible areas.

This “bird-like flight” capability of SUPER has the potential to revolutionize various industries, making them more efficient, safer, and more reliable. The future of drone technology has indeed taken a significant leap forward with this groundbreaking innovation.

Continue Reading

Artificial Intelligence

Transistors Get a Boost: Scientists Develop New, More Efficient Material

Shrinking silicon transistors have reached their physical limits, but a team from the University of Tokyo is rewriting the rules. They’ve created a cutting-edge transistor using gallium-doped indium oxide with a novel “gate-all-around” structure. By precisely engineering the material’s atomic structure, the new device achieves remarkable electron mobility and stability. This breakthrough could fuel faster, more reliable electronics powering future technologies from AI to big data systems.

Avatar photo

Published

on

By

Scientists have long considered transistors to be one of the greatest inventions of the 20th century. These tiny components are the backbone of modern electronics, allowing us to amplify or switch electrical signals. However, as electronics continue to shrink, it’s become increasingly difficult to scale down silicon-based transistors. It seemed like we had hit a wall.

A team of researchers from The University of Tokyo has come up with an innovative solution. They’ve developed a new transistor made from gallium-doped indium oxide (InGaOx), a material that can be structured as a crystalline oxide. This orderly structure is well-suited for electron mobility, making it an ideal candidate for replacing traditional silicon-based transistors.

The researchers wanted to enhance efficiency and scalability, so they designed their transistor with a “gate-all-around” structure. In this design, the gate (which turns the current on or off) surrounds the channel where the current flows. This wraps the gate entirely around the channel, improving efficiency and allowing for further miniaturization.

To create this new transistor, the team used atomic-layer deposition to coat the channel region with a thin film of InGaOx, one atomic layer at a time. They then heated the film to transform it into the crystalline structure needed for electron mobility.

The results are promising: their gate-all-around MOSFET achieves high mobility of 44.5 cm2/Vs and operates stably under applied stress for nearly three hours. In fact, this new transistor outperforms similar devices that have previously been reported.

This breakthrough has the potential to revolutionize electronics by providing more reliable and efficient components suited for applications with high computational demand, such as big data and artificial intelligence. These tiny transistors promise to help next-gen technology run smoothly, making a significant difference in our everyday lives.

Continue Reading

Artificial Intelligence

Safeguarding Adolescents in a Digital Age: Experts Urge Developers to Protect Young Users from AI Risks

The effects of artificial intelligence on adolescents are nuanced and complex, according to a new report that calls on developers to prioritize features that protect young people from exploitation, manipulation and the erosion of real-world relationships.

Avatar photo

Published

on

By

The American Psychological Association (APA) has released a report calling for developers to prioritize features that protect adolescents from exploitation, manipulation, and erosion of real-world relationships in the age of artificial intelligence (AI). The report, “Artificial Intelligence and Adolescent Well-being: An APA Health Advisory,” warns against repeating the mistakes made with social media and urges stakeholders to ensure youth safety is considered early in AI development.

The APA expert advisory panel notes that adolescence is a complex period of brain development, spanning ages 10-25. During this time, age is not a foolproof marker for maturity or psychological competence. The report emphasizes the need for special safeguards aimed at younger users.

“We urge all stakeholders to ensure youth safety is considered relatively early in the evolution of AI,” said APA Chief of Psychology Mitch Prinstein, PhD. “AI offers new efficiencies and opportunities, yet its deeper integration into daily life requires careful consideration to ensure that AI tools are safe, especially for adolescents.”

The report makes several recommendations to make certain that adolescents can use AI safely:

1. Healthy boundaries with simulated human relationships: Ensure that adolescents understand the difference between interactions with humans and chatbots.
2. Age-appropriate defaults in privacy settings, interaction limits, and content: Implement transparency, human oversight, support, and rigorous testing to safeguard adolescents’ online experiences.
3. Encourage uses of AI that promote healthy development: Assist students in brainstorming, creating, summarizing, and synthesizing information while acknowledging AI’s limitations.
4. Limit access to and engagement with harmful and inaccurate content: Build protections to prevent adolescents from exposure to damaging material.
5. Protect adolescents’ data privacy and likenesses: Limit the use of adolescents’ data for targeted advertising and sale to third parties.

The report also calls for comprehensive AI literacy education, integrating it into core curricula and developing national and state guidelines for literacy education.

Additional Resources:

* Report:
* Guidance for parents on AI and keeping teens safe: [APA.org](http://APA.org)
* Resources for teens on AI literacy: [APA.org](http://APA.org)

Continue Reading

Trending