Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computer Science

Sharper than Lightning: Oxford’s Groundbreaking Quantum Breakthrough

Physicists at the University of Oxford have set a new global benchmark for the accuracy of controlling a single quantum bit, achieving the lowest-ever error rate for a quantum logic operation–just 0.000015%, or one error in 6.7 million operations. This record-breaking result represents nearly an order of magnitude improvement over the previous benchmark, set by the same research group a decade ago.

Avatar photo

Published

on

The University of Oxford has achieved a major milestone in the field of quantum computing. Physicists at the institution have successfully set a new global benchmark for controlling a single quantum bit (qubit), reducing the error rate to an astonishing 0.000015% – or one error in 6.7 million operations. This achievement represents nearly an order of magnitude improvement over the previous record, which was also held by the same research group.

To put this remarkable result into perspective, it’s more likely for a person to be struck by lightning in a given year (1 in 1.2 million) than for one of Oxford’s quantum logic gates to make a mistake. This breakthrough has significant implications for the development of practical and robust quantum computers that can tackle real-world problems.

The researchers utilized a trapped calcium ion as the qubit, which is a natural choice for storing quantum information due to its long lifetime and robustness. Unlike conventional methods, which rely on lasers, the Oxford team employed electronic (microwave) signals to control the quantum state of the ions. This approach offers greater stability and other benefits for building practical quantum computers.

The experiment was conducted at room temperature without magnetic shielding, simplifying the technical requirements for a working quantum computer. The previous best single-qubit error rate achieved by the Oxford team in 2014 was 1 in 1 million. The group’s expertise led to the launch of the spinout company Oxford Ionics in 2019, which has become an established leader in high-performance trapped-ion qubit platforms.

While this record-breaking result marks a significant milestone, the researchers caution that it is part of a larger challenge. Quantum computing requires both single- and two-qubit gates to function together. Currently, two-qubit gates still have significantly higher error rates – around 1 in 2000 in the best demonstrations to date – so reducing these will be crucial to building fully fault-tolerant quantum machines.

The experiments were carried out by a team of researchers from the University of Oxford’s Department of Physics, including Molly Smith, Aaron Leu, Dr Mario Gely, and Professor David Lucas, together with a visiting researcher, Dr Koichiro Miyanishi, from the University of Osaka’s Centre for Quantum Information and Quantum Biology. The Oxford scientists are part of the UK Quantum Computing and Simulation (QCS) Hub, which is a part of the ongoing UK National Quantum Technologies Programme.

Artificial Intelligence

“Revolutionizing Computing with the ‘Microwave Brain’ Chip”

Cornell engineers have built the first fully integrated “microwave brain” — a silicon microchip that can process ultrafast data and wireless signals at the same time, while using less than 200 milliwatts of power. Instead of digital steps, it uses analog microwave physics for real-time computations like radar tracking, signal decoding, and anomaly detection. This unique neural network design bypasses traditional processing bottlenecks, achieving high accuracy without the extra circuitry or energy demands of digital systems.

Avatar photo

Published

on

By

Here’s the rewritten article:

The world of computing has taken a significant leap forward with the development of the “microwave brain” chip, a low-power microchip that can compute on both ultrafast data signals and wireless communication signals. This revolutionary innovation, created by researchers at Cornell University, marks the first time a processor has harnessed the physics of microwaves to perform real-time frequency domain computation.

Detailed in the journal Nature Electronics, this groundbreaking processor is the first true microwave neural network and is fully integrated on a silicon microchip. It can handle tasks like radio signal decoding, radar target tracking, and digital data processing while consuming less than 200 milliwatts of power – an impressive feat considering its speed and efficiency.

The secret behind this technology lies in its design as a neural network, modeled after the human brain’s interconnected modes produced in tunable waveguides. This allows it to recognize patterns and learn from data, unlike traditional digital computers that rely on step-by-step instructions timed by a clock. The microwave brain processor uses analog, nonlinear behavior in the microwave regime to handle data streams at speeds of tens of gigahertz – far faster than most digital chips.

“We’ve created something that looks more like a controlled mush of frequency behaviors that can ultimately give you high-performance computation,” says Alyssa Apsel, professor of engineering and co-senior author. Bal Govind, lead author and doctoral student, explains that the chip’s programmable distortion across a wide band of frequencies allows it to be repurposed for several computing tasks.

The microwave brain processor has achieved remarkable accuracy on multiple classification tasks involving wireless signal types, comparable to digital neural networks but with a fraction of the power and size. It can perform both low-level logic functions and complex tasks like identifying bit sequences or counting binary values in high-speed data.

With its extreme sensitivity to inputs, this chip is well-suited for hardware security applications like sensing anomalies in wireless communications across multiple bands of microwave frequencies. The researchers are optimistic about the scalability of this technology and are experimenting with ways to improve its accuracy and integrate it into existing microwave and digital processing platforms.

As the world becomes increasingly dependent on data-driven technologies, innovations like the microwave brain chip have the potential to revolutionize computing and redefine what is possible in the realm of artificial intelligence and machine learning.

Continue Reading

Artificial Intelligence

“Tiny ‘talking’ robots form shape-shifting swarms that heal themselves”

Scientists have designed swarms of microscopic robots that communicate and coordinate using sound waves, much like bees or birds. These self-organizing micromachines can adapt to their surroundings, reform if damaged, and potentially undertake complex tasks such as cleaning polluted areas, delivering targeted medical treatments, or exploring hazardous environments.

Avatar photo

Published

on

By

The article discusses how scientists have developed tiny robots that use sound waves to coordinate into large swarms, exhibiting intelligent-like behavior. This innovative technology has the potential to revolutionize various fields, including environmental remediation, healthcare, and search and rescue operations.

Led by Igor Aronson, a team of researchers created computer models to simulate the behavior of these micromachines. They found that acoustic communication allowed individual robotic agents to work together seamlessly, adapting their shape and behavior to their environment, much like a school of fish or a flock of birds.

The robots’ ability to self-organize and re-form themselves if deformed is a significant breakthrough in the field of active matter, which studies the collective behavior of self-propelled microscopic biological and synthetic agents. This new technology has the potential to tackle complex tasks such as pollution cleanup, medical treatment from inside the body, and even exploration of disaster zones.

The team’s discovery marks a significant leap toward creating smarter, more resilient, and ultimately more useful microrobots with minimal complexity. The insights from this research are crucial for designing the next generation of microrobots capable of performing complex tasks and responding to external cues in challenging environments.

While the robots in the paper were computational agents within a theoretical model, rather than physical devices that were manufactured, the simulations observed the emergence of collective intelligence that would likely appear in any experimental study with the same design. The team’s findings have opened up new possibilities for the use of sound waves as a means of controlling micro-sized robots, offering advantages over chemical signaling such as faster and farther propagation without loss of energy.

This research has far-reaching implications for various fields, including medicine, environmental science, and engineering. It highlights the potential for microrobots to be used in complex tasks such as exploration, cleanup, and medical treatment, and demonstrates their ability to self-heal and maintain collective intelligence even after breaking apart.

Continue Reading

Civil Engineering

AI Breakthrough in Fusion Reactor Design: Uncovering Hidden Safe Zones with HEAT-ML

Scientists have developed a lightning-fast AI tool called HEAT-ML that can spot hidden “safe zones” inside a fusion reactor where parts are protected from blistering plasma heat. Finding these areas, known as magnetic shadows, is key to keeping reactors running safely and moving fusion energy closer to reality.

Avatar photo

Published

on

By

The development of artificial intelligence (AI) in fusion research has taken a significant leap forward. A public-private partnership between Commonwealth Fusion Systems (CFS), the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), and Oak Ridge National Laboratory has led to the creation of HEAT-ML, an AI approach that rapidly finds and simulates “magnetic shadows” in fusion vessels: safe havens protected from intense heat plasma.

HEAT-ML uses a deep neural network to learn how to calculate shadow masks, which are 3D maps of specific areas on internal components shielded from direct heat. This AI surrogate was trained using a database of approximately 1,000 SPARC simulations and can now simulate the same calculations in mere milliseconds, as opposed to the previous 30 minutes.

The goal is to create software that significantly speeds up fusion system design and enables good decision-making during operations by adjusting plasma settings to prevent potential problems. HEAT-ML was specifically designed for a small part of the SPARC tokamak under construction by CFS but has the potential to be expanded to generalize the calculation of shadow masks for exhaust systems of any shape and size, as well as other plasma-facing components.

Researchers believe that this AI breakthrough could pave the way for faster fusion system design, enabling good decision-making during operations, and potentially leading to limitless amounts of electricity on Earth.

Continue Reading

Trending