Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Chemistry

“The Edge Effect: Scientists Uncover Hidden Rules of Nature”

If you’ve ever watched a flock of birds move in perfect unison or seen ripples travel across a pond, you’ve witnessed nature’s remarkable ability to coordinate motion. Recently, a team of scientists and engineers has discovered a similar phenomenon on a microscopic scale, where tiny magnetic particles driven by rotating fields spontaneously move along the edges of clusters driven by invisible ‘edge currents’ that follow the rules of an unexpected branch of physics.

Avatar photo

Published

on

The human mind is capable of incredible feats – from coordinating complex movements to solving intricate problems. Nature, too, has its own remarkable abilities, such as the synchronization of bird flocks or the propagation of ripples across ponds. Recently, a team of researchers at Rice University discovered a similar phenomenon on a microscopic scale. Their study, published in Physical Review Research, reveals how tiny magnetic particles, driven by rotating fields, spontaneously move along the edges of clusters due to “edge currents” that follow the rules of an unexpected branch of physics – topological physics.

“The initial data was like nothing we’d ever seen before,” said Dr. Evelyn Tang, corresponding author and assistant professor of physics and astronomy. “These were edge flows!” The team’s experiment involved suspending superparamagnetic colloids (tiny magnetic beads) in salty water and applying a rotating magnetic field, which caused the particles to form crystals in different shapes. Sometimes these shapes were dense circular clusters, while others spread out into sheets with empty holes or “voids.”

The experiment got especially interesting when the particles along the outer edges of these shapes started to move faster than the rest, forming a kind of conveyor belt around the border. “We call this edge flow,” said co-first author Aleksandra Nelson, a former postdoctoral fellow in Dr. Tang’s lab. “It is basically a current that forms naturally around the boundary without anyone pushing it.”

To understand why this occurred, the researchers turned to topological physics – a way of describing systems where movement or behavior is controlled by the overall shape or layout rather than the exact details. “Topology is like the highway signs that determines the traffic flow,” said co-author Sibani Lisa Biswal, the William M. McCardell Professor in Chemical Engineering. “Even if there are construction or potholes, the traffic still flows the same way because the route is set by the system’s shape.”

In this case, the “rules” predicted that rotating magnetic particles would generate movement along the edges of whatever shape they formed – whether it was a cluster or a void. And that’s exactly what the team observed under the microscope. Interestingly, the type of motion depended on the shape. When particles formed free-floating clusters, the edge flow caused the whole cluster to spin like a tiny wheel. But when the particles formed larger sheets with voids, the edges still had movement, but the overall structure didn’t rotate.

The ability to control how particles move and organize themselves may seem like a niche discovery, but it has broad implications. Understanding how to direct motion in crowded, dynamic systems could inform the design of responsive materials such as targeted drug delivery, adaptive surfaces or swarms of microbots.

“We’re learning how to control collective behavior using simple physical principles,” said co-first author Dana Lobmeyer, a recent graduate in Dr. Biswal’s lab. “This is a step toward creating materials that can sense their environment and respond intelligently without needing a computer or instructions.”

Although the experiments used synthetic particles, the team sees parallels in biology too. Many cell clusters rotate during development or healing, raising the possibility that similar physical principles are at work inside living organisms.

“This is the beauty of science,” Dr. Tang said. “We’re taking a concept from fundamental math and statistical physics to apply it to everyday materials. It’s a reminder that the same elegant rules can show up right in the lab next door.”

Ancient Civilizations

Reviving an Ancient Hue: Researchers Recreate Egyptian Blue Pigment

Researchers have recreated the world’s oldest synthetic pigment, called Egyptian blue, which was used in ancient Egypt about 5,000 years ago.

Avatar photo

Published

on

By

The world’s oldest synthetic pigment, Egyptian blue, has been recreated by a team of researchers from Washington State University. This breakthrough, published in the journal NPJ Heritage Science, provides valuable insights for archaeologists and conservation scientists studying ancient Egyptian materials.

Led by John McCloy, director of WSU’s School of Mechanical and Materials Engineering, the research team collaborated with the Carnegie Museum of Natural History and the Smithsonian’s Museum Conservation Institute to develop 12 recipes for the pigment. These recipes utilized a variety of raw materials and heating times, replicating temperatures available to ancient artists.

Egyptian blue was highly valued in ancient times due to its unique properties and versatility. It was used as a substitute for expensive minerals like turquoise or lapis lazuli and applied to wood, stone, and cartonnage – a papier-mâché-type material. Depending on its ingredients and processing time, the pigment’s color ranged from deep blue to dull gray or green.

The researchers’ work aimed to highlight how modern science can reveal hidden stories in ancient Egyptian objects. After the Egyptians, the pigment was used by Romans, but by the Renaissance period, the knowledge of how it was made had largely been forgotten.

In recent years, there has been a resurgence of interest in Egyptian blue due to its intriguing properties and potential new technological applications. The pigment emits light in the near-infrared part of the electromagnetic spectrum, which people can’t see, making it suitable for fingerprinting and counterfeit-proof inks. It also shares similar chemistry with high-temperature superconductors.

To understand the makeup of Egyptian blue, the researchers created 12 different recipes using mixtures of silicon dioxide, copper, calcium, and sodium carbonate. They heated the material at around 1000 degrees Celsius for between one and 11 hours to replicate temperatures available to ancient artists. After cooling the samples at various rates, they studied the pigments using modern microscopy and analysis techniques that had never been used for this type of research.

The researchers found that Egyptian blue is highly heterogeneous, with different people making the pigment and transporting it to final uses elsewhere. Small differences in the process resulted in very different outcomes. In fact, to get the bluest color required only about 50% of the blue-colored components, regardless of the rest of the mixture’s composition.

The samples created are currently on display at Carnegie Museum of Natural History in Pittsburgh, Pennsylvania and will become part of the museum’s new long-term gallery focused on ancient Egypt. This research serves as a prime example of how science can shed light on our human past, revealing hidden stories in ancient objects and materials.

Continue Reading

Chemistry

Ultra-Compact Lenses That Unlock New Possibilities for Light

Physicists have developed a lens with ‘magic’ properties. Ultra-thin, it can transform infrared light into visible light by halving the wavelength of incident light.

Avatar photo

Published

on

By

Ultra-compact lenses have revolutionized the field of optics, enabling the creation of smaller, more efficient, and cost-effective optical devices. These innovative lenses, known as metalenses, are flat, ultra-thin, and lightweight, making them ideal for a wide range of applications, from camera technology to next-generation microscopy tools.

The key to this breakthrough lies in the use of special metasurfaces composed of nanostructures that modify the direction of light. By harnessing the power of nonlinear optics, researchers can now convert infrared light into visible radiation, opening up new possibilities for authentication, security features, and advanced imaging techniques.

Professor Rachel Grange at ETH Zurich has developed a novel process that enables the fabrication of lithium niobate metalenses using chemical synthesis and precision nanoengineering. This innovative technique allows for mass production, cost-effectiveness, and faster fabrication than other methods, making it an exciting development in the field of optics.

The potential applications of ultra-compact lenses are vast, from counterfeit-proof banknotes to advanced microscopy tools that can reveal new details about materials and structures. The use of simple camera detectors to convert infrared light into visible radiation could revolutionize sensing technologies, while reducing equipment needs for deep-UV light patterning in electronics fabrication.

As researchers continue to explore the possibilities offered by ultra-compact lenses, it’s clear that we’ve only scratched the surface of what this technology can achieve. With its potential to transform industries and improve our understanding of the world around us, ultra-compact lenses are an exciting development that promises to unlock new possibilities for light.

Continue Reading

Chemistry

A Groundbreaking Discovery: Designer Hybrid 2D Materials for Next-Generation Technologies

Materials scientists have succeeded in creating a genuine 2D hybrid material called glaphene.

Avatar photo

Published

on

By

The field of materials science has taken a significant leap forward with the creation of designer hybrid 2D materials. A team of researchers from Rice University has successfully synthesized glaphene, a genuine 2D hybrid material by chemically integrating graphene and silica glass into a single compound. This breakthrough discovery opens up new avenues for developing custom-built materials for next-generation electronics, photonics, and quantum devices.

The team employed a two-step, single-reaction method to grow glaphene using a liquid chemical precursor containing both silicon and carbon. By adjusting oxygen levels during heating, they first grew graphene and then shifted conditions to favor the formation of a silica layer. This novel approach allowed them to create a true hybrid material with new electronic and structural properties.

One of the key findings was that the layers in glaphene do not simply rest on each other; instead, electrons move and form new interactions and vibration states, giving rise to properties neither material has on its own. This unique bonding between the graphene and silica layers changes the material’s structure and behavior, turning a metal and an insulator into a new type of semiconductor.

The researchers used various techniques, including Raman spectroscopy and quantum simulations, to verify the experimental results and gain insights into the atomic-level interactions within glaphene. The findings suggest that this hybrid bonding allows electrons to flow between the layers, creating entirely new behaviors.

This research has significant implications for the development of next-generation materials with tailored properties. By combining fundamentally different 2D materials, researchers can create custom-built materials from scratch, enabling breakthroughs in various fields such as electronics, photonics, and quantum computing.

The team’s work reflects a guiding principle that encourages exploring ideas that others may hesitate to mix. This research demonstrates the power of collaboration and interdisciplinary approaches in driving innovation forward. The findings have been supported by various funding organizations and institutions, highlighting the importance of public-private partnerships in advancing scientific knowledge.

In conclusion, the discovery of glaphene represents a major breakthrough in materials science, offering new possibilities for creating designer hybrid 2D materials with tailored properties. This research has significant implications for various fields, from electronics to quantum computing, and underscores the importance of collaboration and interdisciplinary approaches in driving innovation forward.

Continue Reading

Trending