Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Chemistry

“The Edge Effect: Scientists Uncover Hidden Rules of Nature”

If you’ve ever watched a flock of birds move in perfect unison or seen ripples travel across a pond, you’ve witnessed nature’s remarkable ability to coordinate motion. Recently, a team of scientists and engineers has discovered a similar phenomenon on a microscopic scale, where tiny magnetic particles driven by rotating fields spontaneously move along the edges of clusters driven by invisible ‘edge currents’ that follow the rules of an unexpected branch of physics.

Avatar photo

Published

on

The human mind is capable of incredible feats – from coordinating complex movements to solving intricate problems. Nature, too, has its own remarkable abilities, such as the synchronization of bird flocks or the propagation of ripples across ponds. Recently, a team of researchers at Rice University discovered a similar phenomenon on a microscopic scale. Their study, published in Physical Review Research, reveals how tiny magnetic particles, driven by rotating fields, spontaneously move along the edges of clusters due to “edge currents” that follow the rules of an unexpected branch of physics – topological physics.

“The initial data was like nothing we’d ever seen before,” said Dr. Evelyn Tang, corresponding author and assistant professor of physics and astronomy. “These were edge flows!” The team’s experiment involved suspending superparamagnetic colloids (tiny magnetic beads) in salty water and applying a rotating magnetic field, which caused the particles to form crystals in different shapes. Sometimes these shapes were dense circular clusters, while others spread out into sheets with empty holes or “voids.”

The experiment got especially interesting when the particles along the outer edges of these shapes started to move faster than the rest, forming a kind of conveyor belt around the border. “We call this edge flow,” said co-first author Aleksandra Nelson, a former postdoctoral fellow in Dr. Tang’s lab. “It is basically a current that forms naturally around the boundary without anyone pushing it.”

To understand why this occurred, the researchers turned to topological physics – a way of describing systems where movement or behavior is controlled by the overall shape or layout rather than the exact details. “Topology is like the highway signs that determines the traffic flow,” said co-author Sibani Lisa Biswal, the William M. McCardell Professor in Chemical Engineering. “Even if there are construction or potholes, the traffic still flows the same way because the route is set by the system’s shape.”

In this case, the “rules” predicted that rotating magnetic particles would generate movement along the edges of whatever shape they formed – whether it was a cluster or a void. And that’s exactly what the team observed under the microscope. Interestingly, the type of motion depended on the shape. When particles formed free-floating clusters, the edge flow caused the whole cluster to spin like a tiny wheel. But when the particles formed larger sheets with voids, the edges still had movement, but the overall structure didn’t rotate.

The ability to control how particles move and organize themselves may seem like a niche discovery, but it has broad implications. Understanding how to direct motion in crowded, dynamic systems could inform the design of responsive materials such as targeted drug delivery, adaptive surfaces or swarms of microbots.

“We’re learning how to control collective behavior using simple physical principles,” said co-first author Dana Lobmeyer, a recent graduate in Dr. Biswal’s lab. “This is a step toward creating materials that can sense their environment and respond intelligently without needing a computer or instructions.”

Although the experiments used synthetic particles, the team sees parallels in biology too. Many cell clusters rotate during development or healing, raising the possibility that similar physical principles are at work inside living organisms.

“This is the beauty of science,” Dr. Tang said. “We’re taking a concept from fundamental math and statistical physics to apply it to everyday materials. It’s a reminder that the same elegant rules can show up right in the lab next door.”

Batteries

“Reviving ‘Dead’ Batteries: The Path to a Greener Future”

Lithium battery recycling offers a powerful solution to rising demand, with discarded batteries still holding most of their valuable materials. Compared to mining, recycling slashes emissions and resource use while unlocking major economic potential. Yet infrastructure, policy, and technology hurdles must still be overcome.

Avatar photo

Published

on

By

As the world moves towards a cleaner energy future, the importance of recycling ‘dead’ batteries cannot be overstated. With the growing demand for electric vehicles, portable electronics, and renewable energy storage, lithium has become a critical mineral. According to new research from Edith Cowan University (ECU), tapping into used batteries as a secondary source of lithium not only helps reduce environmental impact but also secures access to this valuable resource, supporting a circular economy and ensuring long-term sustainability in the energy sector.

The global lithium-ion battery market size is projected to expand at a compound annual growth rate of 13 per cent, reaching $87.5 billion by 2027. However, only around 20 per cent of a lithium-ion battery’s capacity is used before the battery is no longer fit for use in electric vehicles, meaning those batteries ending up in storage or on the landfill retain nearly 80 per cent of their lithium capacity.

The Australian Department of Industry, Science and Resources has estimated that by 2035, Australia could be generating 137,000 t of lithium battery waste annually. For the end-of-life batteries, the obvious answer is recycling, said first author Mr Asad Ali, quoting figures from the government which estimates that the recycling industry could be worth between $603 million and $3.1 billion annually in just over a decade.

“By recycling these batteries, you can access not only the remaining lithium – which already purified to near 99 per cent – but you can also retrieve the nickel and the cobalt from these batteries,” Mr Ali noted.

While the lithium retrieved through the recycling process is unlikely to impact the lithium extraction or downstream sectors, the recycling process offered significant environmental benefits when compared with the mining industry. Recycling processes can significantly reduce the extensive use of land, soil contamination, ecological footprint, water footprint, carbon footprint, and harmful chemical release into the environment.

Mining emits up to 37% tons of CO2 per ton of lithium. Recycling processes produce up to 61 per cent less carbon emissions compared with mining and uses 83 per cent less energy and 79 per cent less water as compared to mining.

ECU lecturer and corresponding author Dr Muhammad Azhar said that while Australia holds one of the largest hard rock lithium reserves in the world, the recovery of lithium from end-of-life batteries could provide socio-economic benefits and fulfils environmental sustainability.

The benefits of lithium-ion battery recycling seem obvious, but there are still some challenges to be addressed. The rate of innovation significantly outstrips policy development, and the chemical make-up of the batteries also continuously evolve, which makes the recycling of these batteries more complicated.

However, there is a definite need for investment into the right infrastructure in order to create this circular economy. Several Australian companies are looking at the best ways to approach this, and ECU is exploring the second life of retired lithium batteries, providing a promising future for a greener tomorrow.

Continue Reading

Biochemistry

Shape-Shifting Catalysts: Revolutionizing Green Chemistry with a Single Atom

A team in Milan has developed a first-of-its-kind single-atom catalyst that acts like a molecular switch, enabling cleaner, more adaptable chemical reactions. Stable, recyclable, and eco-friendly, it marks a major step toward programmable sustainable chemistry.

Avatar photo

Published

on

By

The scientific community has witnessed a groundbreaking development in sustainable chemistry with the creation of a shape-shifting single-atom catalyst at the Politecnico di Milano. This innovative material has demonstrated the capability to selectively adapt its chemical activity, paving the way for more efficient and programmable industrial processes.

Published in the Journal of the American Chemical Society, one of the world’s most esteemed scientific journals in chemistry, this study marks a significant breakthrough in the field of single-atom catalysts. For the first time, scientists have successfully designed a material that can change its catalytic function depending on the chemical environment, much like a ‘molecular switch.’ This allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

The research focuses on a palladium-based catalyst in atomic form encapsulated in a specially designed organic structure. This unique setup enables the material to ‘switch’ between two essential reactions in organic chemistry – bioreaction and carbon-carbon coupling – simply by varying the reaction conditions. The team has successfully demonstrated this phenomenon, showcasing the potential for more intelligent, selective, and sustainable chemical transformations.

Lead researcher Gianvito Vilé, lecturer at the Politecnico di Milano’s ‘Giulio Natta’ Department of Chemistry, Materials and Chemical Engineering, emphasizes the significance of their discovery: “We have created a system that can modulate catalytic reactivity in a controlled manner, paving the way for more intelligent, selective, and sustainable chemical transformations.”

The new catalyst stands out not only for its reaction flexibility but also for its stability, recyclability, and reduced environmental impact. ‘Green’ analyses conducted by the team reveal a substantial decrease in waste and hazardous reagents, making it an exemplary model for sustainable chemistry.

This study is the result of an international collaboration with esteemed institutions from around the world, including the University of Milan-Bicocca, the University of Ostrava (Czech Republic), the University of Graz (Austria), and Kunsan National University (South Korea). The joint efforts of these researchers have led to a groundbreaking achievement that has far-reaching implications for the field of green chemistry.

Continue Reading

Chemistry

Scientists Confirm a Fundamental Quantum Rule for the First Time

Scientists have, for the first time, experimentally proven that angular momentum is conserved even when a single photon splits into two, pushing quantum physics to its most fundamental limits. Using ultra-precise equipment, the team captured this elusive process—comparable to finding a needle in a haystack—confirming a cornerstone law of nature at the photon level.

Avatar photo

Published

on

By

Scientists at Tampere University and their international collaborators have made a groundbreaking discovery in the field of quantum physics. They have experimentally confirmed that angular momentum is conserved when a single photon is converted into a pair, validating a key principle of physics at the quantum level for the first time. This breakthrough has significant implications for creating complex quantum states useful in computing, communication, and sensing.

In essence, the researchers have tested the conservation laws of rotating objects to see if they also apply to light. They found that when a photon with zero orbital angular momentum is split into two photons, the OAM quanta of both photons must add to zero. This means that if one of the newly generated photons has one OAM quanta, its partner photon must have the opposite, i.e., negative OAM quanta.

The researchers used an extremely stable optical setup and delicate measurements to record enough successful conversions such that they could confirm the fundamental conservation law. They also observed first indications of quantum entanglement in the generated photon pairs, which suggests that the technique can be extended to create more complex photonic quantum states.

This work is not only of fundamental importance but also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways. The researchers plan to improve the overall efficiency of their scheme and develop better strategies for measuring the generated quantum state such that in the future these photonic needles can be found easier in the laboratory haystack.

The confirmation of this fundamental quantum rule opens new possibilities for creating complex quantum states useful in computing, communication, and sensing. It also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways, i.e., in space, time, and polarization.

Continue Reading

Trending