Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computer Modeling

The Hidden Environmental Cost of Thinking AI Models

Every query typed into a large language model (LLM), such as ChatGPT, requires energy and produces CO2 emissions. Emissions, however, depend on the model, the subject matter, and the user. Researchers have now compared 14 models and found that complex answers cause more emissions than simple answers, and that models that provide more accurate answers produce more emissions. Users can, however, to an extent, control the amount of CO2 emissions caused by AI by adjusting their personal use of the technology, the researchers said.

Avatar photo

Published

on

The article “Thinking AI models emit 50x more CO2—and often for nothing” reveals a shocking truth about the environmental cost of using thinking AI models. These models, which are capable of generating elaborate responses to complex questions, have a significant carbon footprint due to the computing processes involved in producing these answers. Researchers in Germany have measured and compared the CO2 emissions of different LLMs (Large Language Models) using standardized questions, and their findings are eye-opening.

The study found that reasoning-enabled models produced up to 50 times more CO2 emissions than concise response models. This is because reasoning models generate additional tokens, which are words or parts of words converted into a string of numbers that can be processed by the LLM. These tokens require significant computational power and energy consumption, resulting in substantial carbon emissions.

The researchers evaluated 14 LLMs with varying parameters (7-72 billion) on 1,000 benchmark questions across diverse subjects. The results showed that reasoning models created an average of 543.5 “thinking” tokens per question, whereas concise models required just 37.7 tokens per question. This significant difference in token footprint resulted in higher CO2 emissions.

The study also highlighted the accuracy-sustainability trade-off inherent in LLM technologies. None of the models that kept emissions below 500 grams of CO2 equivalent achieved higher than 80% accuracy on answering the 1,000 questions correctly. The researchers concluded that users can significantly reduce emissions by prompting AI to generate concise answers or limiting the use of high-capacity models to tasks that genuinely require that power.

The findings of this study are crucial for individuals who use AI technologies daily. By understanding the environmental cost of their AI usage, they can make more informed decisions about when and how they use these technologies. The choice of model, subject matter, and even hardware used in the study can make a significant difference in CO2 emissions.

In conclusion, the hidden environmental cost of thinking AI models is a pressing concern that requires attention from both researchers and users. By being more thoughtful and selective in our AI usage, we can reduce the carbon footprint associated with these technologies and promote sustainability in the long run.

Artificial Intelligence

Scientists Uncover the Secret to AI’s Language Understanding: A Phase Transition in Neural Networks

Neural networks first treat sentences like puzzles solved by word order, but once they read enough, a tipping point sends them diving into word meaning instead—an abrupt “phase transition” reminiscent of water flashing into steam. By revealing this hidden switch, researchers open a window into how transformer models such as ChatGPT grow smarter and hint at new ways to make them leaner, safer, and more predictable.

Avatar photo

Published

on

By

The ability of artificial intelligence systems to engage in natural conversations is a remarkable feat. However, despite this progress, the internal processes that lead to such results remain largely unknown. A recent study published in the Journal of Statistical Mechanics: Theory and Experiment (JSTAT) has shed light on this mystery. The research reveals that when small amounts of data are used for training, neural networks initially rely on the position of words in a sentence. However, as the system is exposed to enough data, it transitions to a new strategy based on the meaning of the words.

This transition occurs abruptly, once a critical data threshold is crossed – much like a phase transition in physical systems. The findings offer valuable insights into understanding the workings of these models. Just as a child learning to read starts by understanding sentences based on the positions of words, a neural network begins its journey by relying on word positions. However, as it continues to learn and train, the network “keeps going to school” and develops a deeper understanding of word meanings.

This shift is a critical discovery in the field of artificial intelligence. The researchers used a simplified model of self-attention mechanism – a core building block of transformer language models. These models are designed to process sequences of data, such as text, and form the backbone of many modern language systems.

The study’s lead author, Hugo Cui, explains that the network can use two strategies: one based on word positions and another on word meanings. Initially, the network relies on word positions, but once a certain threshold is crossed, it abruptly shifts to relying on meaning-based strategies. This transition is likened to a phase transition in physical systems, where the system undergoes a sudden, drastic change.

Understanding this phenomenon from a theoretical viewpoint is essential. The researchers emphasize that their findings can provide valuable insights into making neural networks more efficient and safer to use. The study’s results are published in JSTAT as part of the Machine Learning 2025 special issue and included in the proceedings of the NeurIPS 2024 conference.

The research by Cui, Behrens, Krzakala, and Zdeborová, titled “A Phase Transition between Positional and Semantic Learning in a Solvable Model of Dot-Product Attention,” offers new knowledge that can be used to improve the performance and safety of artificial intelligence systems. The study’s findings have significant implications for the development of more efficient and effective language models, ultimately leading to advancements in natural language processing and understanding.

Continue Reading

Artificial Intelligence

The Quantum Drumhead Revolution: A Breakthrough in Signal Transmission with Near-Perfect Efficiency

Researchers have developed an ultra-thin drumhead-like membrane that lets sound signals, or phonons, travel through it with astonishingly low loss, better than even electronic circuits. These near-lossless vibrations open the door to new ways of transferring information in systems like quantum computers or ultra-sensitive biological sensors.

Avatar photo

Published

on

By

The Niels Bohr Institute at the University of Copenhagen has made a groundbreaking discovery that could revolutionize the way we transmit information. Researchers, in collaboration with the University of Konstanz and ETH Zurich, have successfully sent vibrations through an ultra-thin drumhead, measuring only 10 mm wide, with astonishingly low loss – just one phonon out of a million. This achievement is even more impressive than electronic circuit signal handling.

The drumhead, perforated with many triangular holes, utilizes the concept of phonons to transmit signals. Phonons are essentially sound waves that travel through solid materials by vibrating atoms and pushing each other. This phenomenon is not unlike encoding a message and sending it through a material, where signal loss can occur due to various factors like heat or incorrect vibrations.

The researchers’ success lies in achieving almost lossless transmission of signals through the membrane. The reliability of this platform for sending information is incredibly high, making it a promising candidate for future applications. To measure the loss, researchers directed the signal through the material and around the holes, observing that the amplitude decreased by only about one phonon out of a million.

This achievement has significant implications for quantum research. Building a quantum computer requires super-precise transfer of signals between its different parts. The development of sensors capable of measuring the smallest biological fluctuations in our own body also relies heavily on signal transfer. As Assistant Professor Xiang Xi and Professor Albert Schliesser explain, their current focus is on exploring further possibilities with this method.

“We want to experiment with more complex structures and see how phonons move around them or collide like cars at an intersection,” says Albert Schliesser. “This will give us a better understanding of what’s ultimately possible and what new applications there are.” The pursuit of basic research is about producing new knowledge, and this discovery is a testament to the power of scientific inquiry.

In conclusion, the quantum drumhead revolution has brought us one step closer to achieving near-perfect signal transmission. As researchers continue to explore the possibilities of this method, we can expect exciting breakthroughs in various fields, ultimately leading to innovative applications that will transform our understanding of the world.

Continue Reading

Computer Modeling

Scientists Crack Code to Simulate Quantum Computations, Paving Way for Robust Quantum Computers

A multinational team has cracked a long-standing barrier to reliable quantum computing by inventing an algorithm that lets ordinary computers faithfully mimic a fault-tolerant quantum circuit built on the notoriously tricky GKP bosonic code, promising a crucial test-bed for future quantum hardware.

Avatar photo

Published

on

By

The researchers have successfully simulated quantum computations with an error correction code known as the Gottesman-Kitaev-Preskill (GKP) code. This code is commonly used in leading implementations of quantum computers and allows for the correction of errors without destroying the quantum information.

The method developed by the researchers consists of an algorithm capable of simulating quantum computations using a bosonic code, specifically the GKP code. This achievement has been deemed impossible until now due to the immense complexity of quantum computations.

“We have discovered a way to simulate a specific type of quantum computation where previous methods have not been effective,” says Cameron Calcluth, PhD in Applied Quantum Physics at Chalmers and first author of the study published in Physical Review Letters. “This means that we can now simulate quantum computations with an error correction code used for fault tolerance, which is crucial for being able to build better and more robust quantum computers in the future.”

The researchers’ breakthrough has far-reaching implications for the development of stable and scalable quantum computers, which are essential for solving complex problems in various fields. The new method will enable researchers to test and validate a quantum computer’s calculations more reliably, paving the way for the creation of truly reliable quantum computers.

The article Classical simulation of circuits with realistic odd-dimensional Gottesman-Kitaev-Preskill states has been published in Physical Review Letters. The authors are Cameron Calcluth, Giulia Ferrini, Oliver Hahn, Juani Bermejo-Vega, and Alessandro Ferraro.

Continue Reading

Trending