Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Biochemistry

Unlocking Cellular Secrets: New Technique Expands Tissues for Mass Spectrometry Imaging

A new tissue expansion method enables scientists to use mass spectrometry imaging to simultaneously detect hundreds of molecules at the single cell level in their native locations.

Avatar photo

Published

on

Unlocking Cellular Secrets: New Technique Expands Tissues for Mass Spectrometry Imaging

For biologists, seeing is believing. But sometimes biologists face a daunting challenge: visualizing the intricate world within intact tissue samples, down to the level of single cells. Detecting hundreds or thousands of biomolecules – from lipids to metabolites to proteins – in their native environment allows researchers to better understand their functions and interactions.

Traditional imaging methods, including most types of microscopy, provide a view of molecules inside cells but can only track a select handful at one time. Other methods, like regular mass spectrometry, can detect hundreds of molecules but don’t work on intact samples, so researchers can’t see how the biomolecules are oriented.

One promising technique – mass spectrometry imaging – overcomes some of these challenges. It allows researchers to see hundreds of molecules at once in intact tissues. However, it doesn’t have high enough resolution to allow detection at the single cell level.

This was the problem Janelia Senior Group Leader Meng Wang faced. Wang and her team study the fundamental mechanisms behind aging and longevity, and they wanted to detect many different biomolecules in intact tissues to understand how the components change as tissues age.

“Knowing at each specific location what molecules are there and what is in the neighboring cells is very important for any kind of biological question,” Wang says.

Luckily, Wang’s lab is down the hall from Janelia Principal Scientist Paul Tillberg. Tillberg co-invented expansion microscopy as a graduate student at MIT. The method uses a swellable hydrogel material to expand samples uniformly in all directions to a point where fine details, like sub-organelle structure, can be detected with a conventional microscope.

Now a decade old, the expansion process is being applied to other methods outside traditional microscopy. Wang, Tillberg, and their collaborators at Janelia and the University of Wisconsin-Madison wanted to see if they could use expansion to overcome mass spectrometry imaging’s spatial resolution problem.

The result is a new method that expands tissue samples gradually without having to degrade them at the molecular level, as happens in the original expansion process. By expanding the intact samples in all directions, researchers can use mass spectrometry imaging to simultaneously detect hundreds of molecules at the single cell level in their native locations.

“This lets you have an untargeted look in the molecular space, and we are trying to bring it closer to what microscopy can do in terms of spatial resolution,” Tillberg says.

The team used the new technique to delineate the specific spatial patterns of small molecules in different layers of the cerebellum. They found that these molecules – including lipids, peptides, proteins, metabolites, and glycans – are not uniformly distributed, as previously thought. Moreover, they found that each specific layer of the cerebellum has its own signature of lipids, metabolites, and proteins.

The team was also able to detect biomolecules in kidney, pancreas, and tumor tissues, demonstrating that the method can be adapted for many different tissue types. In tumor tissues, they were able to visualize large variations in biomolecules, which could be useful for understanding the molecular mechanisms of tumors and potentially aid in drug development.

“When you can see these biomolecules, then you can start to understand why they have such patterns and how that is related to function,” says Wang. She believes the new technology will allow researchers to track these patterns during development, aging, and disease to understand how different molecules contribute to these processes.

Because the new method doesn’t require adding hardware to an existing mass spec imaging system, and the expansion technique is relatively easy to learn, the team hopes it will be used by many labs around the world. They also hope the new technique will make mass spectrometry imaging a more useful tool for biologists and have laid out a detailed description of the new method and a roadmap for adapting it to other tissue types.

“We wanted to develop something that did not require specialized instruments or procedures, but can be broadly adopted,” Wang says.

Biochemistry

Shape-Shifting Catalysts: Revolutionizing Green Chemistry with a Single Atom

A team in Milan has developed a first-of-its-kind single-atom catalyst that acts like a molecular switch, enabling cleaner, more adaptable chemical reactions. Stable, recyclable, and eco-friendly, it marks a major step toward programmable sustainable chemistry.

Avatar photo

Published

on

By

The scientific community has witnessed a groundbreaking development in sustainable chemistry with the creation of a shape-shifting single-atom catalyst at the Politecnico di Milano. This innovative material has demonstrated the capability to selectively adapt its chemical activity, paving the way for more efficient and programmable industrial processes.

Published in the Journal of the American Chemical Society, one of the world’s most esteemed scientific journals in chemistry, this study marks a significant breakthrough in the field of single-atom catalysts. For the first time, scientists have successfully designed a material that can change its catalytic function depending on the chemical environment, much like a ‘molecular switch.’ This allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

The research focuses on a palladium-based catalyst in atomic form encapsulated in a specially designed organic structure. This unique setup enables the material to ‘switch’ between two essential reactions in organic chemistry – bioreaction and carbon-carbon coupling – simply by varying the reaction conditions. The team has successfully demonstrated this phenomenon, showcasing the potential for more intelligent, selective, and sustainable chemical transformations.

Lead researcher Gianvito Vilé, lecturer at the Politecnico di Milano’s ‘Giulio Natta’ Department of Chemistry, Materials and Chemical Engineering, emphasizes the significance of their discovery: “We have created a system that can modulate catalytic reactivity in a controlled manner, paving the way for more intelligent, selective, and sustainable chemical transformations.”

The new catalyst stands out not only for its reaction flexibility but also for its stability, recyclability, and reduced environmental impact. ‘Green’ analyses conducted by the team reveal a substantial decrease in waste and hazardous reagents, making it an exemplary model for sustainable chemistry.

This study is the result of an international collaboration with esteemed institutions from around the world, including the University of Milan-Bicocca, the University of Ostrava (Czech Republic), the University of Graz (Austria), and Kunsan National University (South Korea). The joint efforts of these researchers have led to a groundbreaking achievement that has far-reaching implications for the field of green chemistry.

Continue Reading

Biochemistry

Scientists Finally Tame the Impossible: A Stable 48-Atom Carbon Ring is Achieved

Researchers have synthesized a stable cyclo[48]carbon, a unique 48-carbon ring that can be studied in solution at room temperature, a feat never achieved before.

Avatar photo

Published

on

By

The discovery of a new type of molecular carbon allotrope, known as cyclocarbon, has been a long-standing challenge for chemists. A team of researchers from Oxford University’s Department of Chemistry, led by Dr Yueze Gao and senior author Professor Harry Andersen, have successfully synthesized a stable 48-atom carbon ring in solution at room temperature. This achievement marks a significant breakthrough in the field, as previous attempts to study cyclocarbons were limited to the gas phase or extremely low temperatures (4 to 10 K).

The researchers employed a unique approach by synthesizing a cyclocarbon catenane, where the C48 ring is threaded through three other macrocycles. This design increases the stability of the molecule, preventing access to the sensitive cyclocarbon core. The team developed mild reaction conditions for the unmasking step in the synthesis process, which allowed them to achieve a stable cyclocarbon in solution at 20°C.

The cyclocarbon catenane was characterized using various spectroscopic techniques, including mass spectrometry, NMR, UV-visible, and Raman spectroscopy. The observation of a single intense 13C NMR resonance for all 48 sp1 carbon atoms provides strong evidence for the cyclocarbon catenane structure.

Lead author Dr Yueze Gao stated that achieving stable cyclocarbons in a vial at ambient conditions is a fundamental step, making it easier to study their reactivity and properties under normal laboratory conditions. Senior author Professor Harry Andersen added that this achievement marks the culmination of a long endeavor, with the original grant proposal written in 2016 based on preliminary results from 2012-2015.

The study also involved researchers from the University of Manchester, the University of Bristol, and the Central Laser Facility, Rutherford Appleton Laboratory. This collaborative effort demonstrates the power of interdisciplinary research in advancing our understanding of complex molecular systems.

This achievement has significant implications for future studies on cyclocarbons and their potential applications in various fields. The researchers’ innovative approach to synthesizing stable cyclocarbons at room temperature opens up new possibilities for exploring the properties and reactivity of these intriguing molecules.

Continue Reading

Biochemistry

“Revolutionizing Medicine: A 100x Faster Path to Life-Saving Drugs with Metal Carbenes”

Using a clever combo of iron and radical chemistry, scientists have unlocked a safer, faster way to create carbenes molecular powerhouses key to modern medicine and materials. It s 100x more efficient than previous methods.

Avatar photo

Published

on

By

Chemists have made a groundbreaking breakthrough in developing a novel method to generate highly useful chemical building blocks by harnessing metal carbenes. This achievement is expected to revolutionize the synthesis of life-saving drugs and materials development.

Typically used in chemical reactions essential for drug synthesis, carbenes are short-lived, highly reactive carbon atoms. However, creating these carbenes has been a challenging task due to limited methods and hazardous procedures.

Researchers at The Ohio State University have now developed an approach that makes producing metal carbenes much easier and safer. According to David Nagib, co-author of the study and distinguished professor in arts and sciences, “Our goal all along was to determine if we could come up with new methods of accessing carbenes that others hadn’t found before.”

The team’s innovative method uses iron as a metal catalyst and combines it with chlorine-based molecules that easily generate free radicals. This combination works to form the carbene of their choice, including many that had never been made before.

These three-sided molecular fragments, known as cyclopropanes, are vital to the synthesis of medicines and agrichemicals due to their small size and unusual energy. The researchers’ work was inspired by looking for the best ways to create these shape, which is one of the most common found in medicines.

“Our lab is obsessed with trying to get the best methods for making cyclopropanes out there as soon as possible,” said Nagib. “We have the eye on the prize of inventing better tools to make better medicines, and along the way, we’ve solved a huge problem in the carbene world.”

The study was recently published in Science, and the team’s discovery is expected to become extremely impactful. By accessing a new way of creating and classifying carbenes, scientists can simplify and improve the current wasteful, multistep process of producing them.

For consumers, this method suggests that future drugs developed by this technology may be cheaper, more potent, faster-acting, and longer-lasting. The work could prevent shortages of important medicines like antibiotics and antidepressants, as well as drugs that treat heart disease, COVID, and HIV infections, said Nagib.

Additionally, the team would like to ensure that their transformational organic chemistry tool is accessible to both big and small research labs and drug manufacturers around the world. One way to guarantee this is by continuing to improve the current technique, said Nagib.

“Our team at Ohio State came together in the coolest, most collaborative way to develop this tool,” he said. “So we’re going to continue racing to show how many different types of catalysts it could work on and make all kinds of challenging and valuable molecules.”

Continue Reading

Trending