Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Asteroids, Comets and Meteors

Unveiling the Secrets of Mars’ Ancient Rivers

Mars may not have always been the dry and dusty world we imagine. A staggering network of ancient riverbeds, spanning over 15,000 kilometers, has been discovered in the planet’s Noachis Terra region, suggesting that flowing water, fueled by precipitation, was once widespread. Unlike previously studied valley networks, these “inverted channels” reveal a long history of persistent water activity, challenging the idea that Mars was merely cold and dry.

Avatar photo

Published

on

The Red Planet’s Hidden Past Revealed: Scientists Discover 15,000 Kilometers of Lost Rivers on Mars

A groundbreaking study has shed new light on Mars’ history, suggesting that the planet was once much wetter than previously thought. Led by PhD student Adam Losekoot and funded by the UK Space Agency, researchers have identified over 15,000 kilometers of ancient riverbeds in the Noachis Terra region of Mars’ southern highlands.

The discovery was made possible by analyzing fluvial sinuous ridges, also known as inverted channels, which are believed to have formed when sediment deposited by rivers hardened and was later exposed as the surrounding material eroded. These features have been found across various terrains on Mars, indicating that flowing water was once widespread in this region.

The new research focuses on fluvial sinuous ridges as an alternate form of evidence for ancient surface water, rather than relying on valley networks, which are branching erosional features that have traditionally been used to infer historical rainfall and runoff. The study’s findings indicate that surface water may have been stable in Noachis Terra during the Noachian-Hesperian transition, a period of geologic and climatic change around 3.7 billion years ago.

“This is an exciting discovery because it shows that Mars was once a much more complex and active planet than we thought,” said Losekoot. “Studying Mars, particularly an underexplored region like Noachis Terra, is really exciting because it’s an environment which has been largely unchanged for billions of years. It’s a time capsule that records fundamental geological processes in a way that just isn’t possible here on Earth.”

The researchers used data from three orbital instruments: the Context Camera (CTX), the Mars Orbiter Laser Altimeter (MOLA) and the High Resolution Imaging Science Experiment (HiRISE). These datasets allowed the team to map the locations, lengths, and morphologies of ridge systems across a wide area.

Many of the features appear as isolated ridge segments, while others form extensive interconnected systems. The spatial distribution and extent of these ridges suggest that they likely formed over a geologically significant period under relatively stable surface conditions.

“Our work is a new piece of evidence that suggests that Mars was once a much more complex and active planet than it is now,” said Losekoot. “The fact that the ridges form extensive interconnected systems suggests that the watery conditions must have been relatively long-lived, meaning Noachis Terra experienced warm and wet conditions for a geologically relevant period.”

These findings challenge existing theories that Mars was generally cold and dry, with a few valleys formed by ice-sheet meltwater in sporadic, short periods of warming. The discovery of ancient riverbeds on Mars provides new insights into the planet’s history and suggests that it may have been more similar to Earth than previously thought.

Asteroids, Comets and Meteors

Crystals Hidden in Cosmic Ice Could Rewrite Our Understanding of Water and Life

Scientists from UCL and the University of Cambridge have revealed that “space ice”—long thought to be completely disordered—is actually sprinkled with tiny crystals, changing our fundamental understanding of ice in the cosmos. These micro-crystals, just nanometers wide, were identified through simulations and lab experiments, revealing that even the most common ice in space retains a surprising structure. This has major implications not just for astrophysics, but also for theories about the origin of life and advanced materials technology.

Avatar photo

Published

on

By

The study by scientists at UCL (University College London) and the University of Cambridge has revealed that “space ice” is not as disordered as previously assumed. The most common form of ice in the Universe, low-density amorphous ice, contains tiny crystals (about three nanometers wide) embedded within its disordered structures.

For decades, scientists have believed that ice in space is completely amorphous, with colder temperatures meaning it does not have enough energy to form crystals when it freezes. However, the researchers used computer simulations and experimental work to show that this is not entirely true.

They found that low-density amorphous ice contains a mixture of crystalline and amorphous regions, rather than being completely disordered. This has significant implications for our understanding of water and life in the Universe.

The findings also have implications for one speculative theory about how life on Earth began, known as Panspermia. According to this theory, the building blocks of life were carried here on an ice comet. However, the researchers’ discovery suggests that this ice would be a less good transport material for these origin of life molecules.

Lead author Dr Michael B. Davies said: “We now have a good idea of what the most common form of ice in the Universe looks like at an atomic level.” The study’s results raise many additional questions about the nature of amorphous ices, and its findings may hold the key to explaining some of water’s many anomalies.

Co-author Professor Christoph Salzmann said: “Ice on Earth is a cosmological curiosity due to our warm temperatures. Ice in the rest of the Universe has long been considered a snapshot of liquid water.” However, this study shows that this is not entirely true, and that ice can take on different forms depending on its origin.

The research team’s findings also raise questions about amorphous materials in general, which have important uses in advanced technology. For instance, glass fibers that transport data long distances need to be amorphous for their function. If they do contain tiny crystals and we can remove them, this will improve their performance.

In conclusion, the study has revealed that cosmic ice is more complex than previously thought, with tiny crystals hidden within its disordered structures. This has significant implications for our understanding of water and life in the Universe, and raises many additional questions about the nature of amorphous ices.

Continue Reading

Asteroids, Comets and Meteors

“Revolutionizing Space Manufacturing: UF Researchers Bend Metal with Lasers to Build Massive Structures in Orbit”

UF engineers, backed by DARPA and NASA, are perfecting laser-forming techniques that let metal sheets fold themselves into giant solar arrays, antennas, and even space-station parts right in orbit—sidestepping rocket size limits and paving the way for sustainable off-Earth construction.

Avatar photo

Published

on

Article:

In the vast expanse of space, Earth’s limitations no longer apply. That’s exactly where University of Florida (UF) engineering associate professor Victoria Miller, Ph.D., and her students are pushing the boundaries of what’s possible.

In partnership with the Defense Advanced Research Projects Agency (DARPA) and NASA’s Marshall Space Flight Center, UF’s engineering team is exploring how to manufacture precision metal structures in orbit using laser technology. The project, called NOM4D – Novel Orbital and Moon Manufacturing, Materials, and Mass-efficient Design – seeks to transform how people think about space infrastructure development.

“We want to build big things in space,” said Miller. “To build big things in space, you must start manufacturing things in space. This is an exciting new frontier.”

Imagine constructing massive structures like satellite antennas, solar panels, or even parts of space stations directly in orbit. That’s exactly what Miller’s team aims to achieve with their pioneering research.

UF received a $1.1 million DARPA contract to carry out this work over three phases. While other universities explore various aspects of space manufacturing, UF is the only one specifically focused on laser forming for space applications, according to Miller.

A major challenge of the NOM4D project is overcoming the size and weight limitations of rocket cargo. To address these concerns, Miller’s team is developing laser-forming technology to bend metals into precise shapes without human touch. This process involves tracing patterns on metals with a laser beam, which heats and bends them into shape.

“With this technology, we can build structures in space far more efficiently than launching them fully assembled from Earth,” said team member Nathan Fripp, also a third-year Ph.D. student studying materials science and engineering. “This opens up a wide range of new possibilities for space exploration, satellite systems, and even future habitats.”

However, the challenge doesn’t stop at shaping metals; Miller’s students are also working to ensure that material properties remain good or improve during the laser-forming process.

“The challenge is ensuring that the material properties stay good or improve during the laser-forming process,” said Miller. “Can we ensure when we bend this sheet metal that bent regions still have really good properties and are strong and tough with the right flexibility?”

To analyze the materials, students ran controlled tests on aluminum, ceramics, and stainless steel, assessing how variables like laser input, heat, and gravity affect how materials bend and behave.

“We run many controlled tests and collect detailed data on how different metals respond to laser energy: how much they bend, how much they heat up, how the heat affects them, and more,” said team member Tianchen Wei, a third-year Ph.D. student in materials science and engineering. “We have also developed models to predict the temperature and the amount of bending based on the material properties and laser energy input.”

The research has made significant progress since 2021, but the technology must be further developed before it’s ready for use in space. Collaboration with NASA Marshall Space Center is critical, enabling researchers to test laser forming in space-like conditions inside a thermal vacuum chamber provided by NASA.

As the project enters its final year, finishing in June of 2026, questions remain around maintaining material integrity during the laser-forming process. Still, Miller’s team remains optimistic that UF moves one step closer to a new era of construction with each simulation and laser test.

“It’s great to be a part of a team pushing the boundaries of what’s possible in manufacturing, not just on Earth, but beyond,” said Wei.

Continue Reading

Asteroids, Comets and Meteors

Citizen Scientists Uncover Rare Exploding Star in Real-Time

Citizen scientists using the Kilonova Seekers platform spotted a stellar flash 2,500 times brighter than before, allowing astronomers to identify the exploding cataclysmic variable GOTO0650 within hours. Swift community follow-up captured X-ray, UV, and amateur telescope data, revealing the star’s rare “period-bouncer” stage.

Avatar photo

Published

on

The article highlights the groundbreaking discovery made by citizen scientists participating in the Kilonova Seekers project. This initiative allows members of the public to analyze near-real-time data collected from the Gravitational-wave Optical Transient Observer (GOTO) project, which involves two arrays of telescopes located on opposite sides of the planet.

The team, led by Dr. Tom Killestein and Dr. Lisa Kelsey, was able to identify a bright exploding star, dubbed GOTO0650, after public volunteers flagged it as an object of interest within 3.5 hours of the image being taken. The quick response enabled the team to gather an unusually complete dataset on the star, including spectroscopy, X-ray, and UV measurements.

The discovery was made possible by the involvement of citizen scientists from around the world, who were able to analyze images and data in real-time. One volunteer, Svetoslav Alexandrov, recalled his excitement when he saw that he would be a co-author on the research paper, while another, Cledison Marcos da Silva, credited the project with distracting him from a serious health problem.

The article concludes by emphasizing the importance of citizen science in making novel serendipitous discoveries in vast datasets. The Kilonova Seekers project is approaching its two-year anniversary and has provided over 3,500 members of the public with the opportunity to discover supernovae and variable stars using real data.

In summary, the article showcases the power of collaborative efforts between scientists and citizens, highlighting the potential for groundbreaking discoveries in real-time. The image prompt complements the article by visually representing the excitement and wonder of uncovering a rare exploding star, surrounded by the diverse group of scientists working together to understand this phenomenon.

Continue Reading

Trending