Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Astronomy

Unveiling the secrets of planet formation in environments of high UV radiation

The fundamental building blocks for planet formation can exist even in environments with extreme ultraviolet radiation, according to a new study.

Avatar photo

Published

on

In a groundbreaking study led by Penn State astronomers, researchers have discovered that the fundamental building blocks for planet formation can exist even in environments with extreme ultraviolet (UV) radiation. This finding was made possible by combining the unparalleled capabilities of NASA’s James Webb Space Telescope (JWST) with sophisticated thermochemical modeling.

The research team focused on a young solar-mass star called XUE 1, located approximately 5,500 light-years away from our sun within the Lobster Nebula. This region is renowned for harboring over 20 massive stars, two of which are among the most massive known in our galaxy and emit intense UV radiation.

The researchers identified the composition of tiny dust grains in the protoplanetary disk around XUE 1 that will eventually grow to form rocky planets. They found that the disk contains sufficient solid material to potentially form at least 10 planets, each with a mass comparable to that of Mercury.

The study also determined the spatial distribution in the disk of various previously detected molecules, including water vapor, carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. These molecules are expected to contribute to the formation of the atmospheres of emerging planets.

Moreover, based on the absence of certain molecules that serve as tracers of UV irradiation in the light detected by JWST, the team inferred that the protoplanetary disk is compact and devoid of gas in its outskirts. It extends only about 10 astronomical units from the host star, roughly the distance from the sun to Saturn.

This compactness is likely a result of the external UV radiation eroding the outer regions of the disk, according to the research team. These findings support the idea that planets form around stars even when the natal disk is exposed to strong external radiation.

The study represents a pivotal step in understanding the impact of external radiation on protoplanetary disks and lays the groundwork for future observational campaigns with both space- and ground-based telescopes aimed at building a more comprehensive picture of planet formation across different cosmic environments.

Astronomy

The Cosmic Conundrum: A Billion-Light-Year Hole Around Earth Unmasks Faster Space Expansion

Our galaxy may reside in a billion-light-year-wide cosmic bubble that accelerates local expansion, potentially settling the long-running Hubble tension. Galaxy counts reveal a sparsely populated neighborhood, and “fossil” sound waves from the Big Bang bolster the void scenario, hinting that gravity has hollowed out this region. Confirming the bubble could refine the universe’s age and reshape our grasp of cosmic growth.

Avatar photo

Published

on

The Cosmic Conundrum: A Billion-Light-Year Hole Around Earth Unmasks Faster Space Expansion

Astronomers have long been puzzled by the discrepancy in the measured expansion rate of the universe, which they refer to as the Hubble tension. This conundrum has left scientists searching for a solution, and recent research suggests that our galaxy might be situated within a massive, billion-light-year hole that makes the cosmos expand faster here than in neighboring regions.

The idea is not new, but it gained momentum with the latest study presented at the Royal Astronomical Society’s National Astronomy Meeting (NAM) in Durham. The researchers’ theory proposes that our galaxy sits near the center of a large, local void, which would cause matter to be pulled by gravity towards the higher-density exterior of the void.

As the void empties out over time, the velocity of objects away from us would increase, giving the appearance of a faster local expansion rate. This potential solution to the Hubble tension is largely a local phenomenon, with little evidence that the expansion rate disagrees with expectations in the standard cosmology further back in time.

The researchers also used baryon acoustic oscillations (BAOs) – essentially the sound waves from the early universe – to support their theory. These sound waves travelled for only a short while before becoming frozen in place once the universe cooled enough for neutral atoms to form. They act as a standard ruler, whose angular size can be used to chart the cosmic expansion history.

By considering all available BAO measurements over the last 20 years, the researchers showed that a void model is about one hundred million times more likely than a void-free model with parameters designed to fit the CMB observations taken by the Planck satellite, the so-called homogeneous Planck cosmology.

The next step for researchers is to compare their local void model with other methods to estimate the history of the universe’s expansion. This involves looking at galaxies that are no longer forming stars and observing their spectra or light to find what kinds of stars they have and in what proportion.

Astronomers can then combine this age with the galaxy’s redshift – how much the wavelength of its light has been stretched – which tells us how much the universe has expanded while light from the galaxy was traveling towards us. This sheds light on the universe’s expansion history.

The Hubble constant was first proposed by Edwin Hubble in 1929 to express the rate of the universe’s expansion. It can be measured by observing the distance of celestial objects and how fast they are moving away from us. The Hubble tension refers to the discrepancy in the measured expansion rate of the universe, specifically between the value based on observations of the early universe and the value related to observations of the local universe.

Baryon acoustic oscillations provide an independent way to measure the expansion rate of the universe and how that rate has changed throughout cosmic history. The discovery of a billion-light-year hole around Earth might be just the solution scientists need to unravel the mysteries of the cosmos.

Continue Reading

Astronomy

Record-Breaking Black Hole Collision Detected by LIGO

Gravitational-wave detectors have captured their biggest spectacle yet: two gargantuan, rapidly spinning black holes likely forged by earlier smash-ups fused into a 225-solar-mass titan, GW231123. The record-setting blast strains both the sensitivity of LIGO-Virgo-KAGRA and the boundaries of stellar-evolution theory, forcing scientists to rethink how such cosmic heavyweights arise.

Avatar photo

Published

on

The Laser Interferometer Gravitational-wave Observatory (LIGO) has made history once again with its groundbreaking detection of gravitational waves from a record-breaking black hole collision. This monumental event, designated GW231123, produced a final black hole with an unprecedented mass of approximately 225 times that of our Sun. The observation was made during the fourth observing run of the LIGO-Virgo-KAGRA (LVK) Collaboration network on November 23, 2023.

LIGO’s twin detectors in Livingston, Louisiana, and Hanford, Washington, jointly detected the signal, which emanated from a black hole merger that resulted in an extremely massive final product. This is the most massive black hole ever observed with gravitational waves, shattering the previous record held by GW190521, which had a total mass of 140 times that of the Sun.

The black holes involved in this event were each approximately 100 and 140 times the mass of our Sun, and their rapid spinning pushed the limits of both gravitational-wave detection technology and current theoretical models. Extracting accurate information from the signal required the use of intricate dynamics models that account for highly spinning black holes.

Mark Hannam, a member of the LVK Collaboration at Cardiff University, comments on the significance of this event: “This is the most massive black hole binary we’ve observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation.” One possibility is that the two black holes in this binary formed through earlier mergers of smaller black holes.

Dave Reitze, the executive director of LIGO at Caltech, emphasizes the importance of this observation: “This observation once again demonstrates how gravitational waves are uniquely revealing the fundamental and exotic nature of black holes throughout the universe.”

The detection of GW231123 pushes the limits of both gravitational-wave detection technology and current theoretical models. Researchers continue to refine their analysis and improve the models used to interpret such extreme events. As Gregorio Carullo, a member of the LVK Collaboration at the University of Birmingham, notes: “It will take years for the community to fully unravel this intricate signal pattern and all its implications.”

This groundbreaking event serves as a testament to the power of gravitational-wave astronomy in probing the universe’s most extreme phenomena. The detection of GW231123 is a significant milestone in the field, pushing the boundaries of our understanding of black holes and their role in shaping the cosmos.

Gravitational-wave detectors like LIGO, Virgo, and KAGRA will continue to observe the universe with unprecedented precision, revealing the secrets of the most violent and exotic events that shape the fabric of space-time. As Sophie Bini, a postdoctoral researcher at Caltech and member of the LVK Collaboration, remarks: “This event pushes our instrumentation and data-analysis capabilities to the edge of what’s currently possible.”

Continue Reading

Astronomy

“Unveiling the Mystery: Dark Dwarfs Hold Key to Understanding Dark Matter”

Imagine a star powered not by nuclear fusion, but by one of the universe’s greatest mysteries—dark matter. Scientists have proposed the existence of “dark dwarfs,” strange glowing objects potentially lurking at the center of our galaxy. These stars might form when brown dwarfs absorb enough dark matter to prevent cooling, transforming into long-lasting beacons of invisible energy. A specific form of lithium could give them away, and if detected, these eerie objects might reveal the true nature of dark matter itself.

Avatar photo

Published

on

The existence of a new type of cosmic object, dubbed “dark dwarfs,” has been proposed by a UK-US research team. These mysterious stars could hold the key to understanding one of the universe’s greatest mysteries: dark matter.

Dark dwarfs are thought to be powered by dark matter, an invisible substance making up about a quarter of the universe. According to theoretical models, young stars can become trapped in dense pockets of dark matter, capturing particles that then collide and release energy, keeping the star-like object glowing indefinitely.

Unlike brown dwarfs, which cool and fade over time, dark dwarfs are sustained by this unique interaction with dark matter. To identify these objects, scientists point to a specific clue: lithium-7. This rare form of lithium would still be present in dark dwarfs, unlike normal stars where it gets burned up quickly.

The discovery of dark dwarfs in the galactic center could provide a unique insight into the particle nature of dark matter. Study co-author Dr Djuna Croon of Durham University emphasizes that finding just one of these mysterious objects would be a major step towards unraveling the true nature of dark matter.

Telescopes like the James Webb Space Telescope might already be capable of spotting dark dwarfs, especially when focusing on the center of our galaxy. Alternatively, scientists could look at many similar objects and statistically determine whether some of them could be dark dwarfs.

The existence of dark dwarfs depends on dark matter being made up of specific kinds of particles called WIMPs (Weakly Interacting Massive Particles). These heavy particles barely interact with ordinary matter but could annihilate within stars, providing the energy needed to keep a dark dwarf alive.

In summary, dark dwarfs offer a fascinating new perspective on the nature of dark matter. Further research and observations are necessary to confirm their existence and unlock the secrets of this mysterious phenomenon.

Continue Reading

Trending