Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Batteries

Harnessing Nuclear Power: A Revolutionary Battery that Could Last a Lifetime

Lithium-ion batteries, used in consumer devices and electric vehicles, typically last hours or days between charges. However, with repeated use, they degrade and need to be charged more frequently. Now, researchers are considering radiocarbon as a source for safe, small and affordable nuclear batteries that could last decades or longer without charging.

Avatar photo

Published

on

The world is on the cusp of a revolution in battery technology, one that could make our lives easier, safer, and more sustainable. Imagine a world where your smartphone, pacemaker, or electric vehicle never runs out of power, thanks to a cutting-edge nuclear battery that lasts for decades without recharging. That’s the promise of Su-Il In’s groundbreaking research at Daegu Gyeongbuk Institute of Science & Technology.

The problem with conventional lithium-ion batteries is their limited lifespan and the environmental impact of mining lithium. In’s team has been working on a safe, small, and affordable nuclear battery powered by radiocarbon, an unstable and radioactive form of carbon that degrades very slowly. This means a radiocarbon-powered battery could theoretically last for millennia.

The researchers have developed a prototype betavoltaic battery using radiocarbon, which generates power by harnessing high-energy particles emitted by the radioactive material. Not all radioactive elements emit radiation that’s damaging to living organisms, and some can be blocked by certain materials. In this design, beta rays from radiocarbon collide with a semiconductor material, resulting in electricity production.

To improve energy conversion efficiency, In’s team used an advanced titanium dioxide-based semiconductor sensitized with a ruthenium-based dye. This innovative approach enabled the collection of generated electrons and increased energy conversion efficiency to 2.86%, compared to a previous design with radiocarbon on only the cathode (0.48%).

The implications are enormous: long-lasting nuclear batteries could enable many applications, such as pacemakers that would last a person’s lifetime, eliminating the need for surgical replacements. The potential impact on industries and daily life is staggering, from reducing e-waste to powering devices in remote areas.

While the research has shown promising results, In acknowledges that further efforts are needed to optimize the design and increase power generation. As climate concerns grow, public perception of nuclear energy is changing, and with these dual-site-source dye-sensitized betavoltaic cell batteries, safe nuclear energy can be put into devices the size of a finger.

The research was funded by the National Research Foundation of Korea and the Daegu Gyeongbuk Institute of Science & Technology Research & Development Program. As we move forward in this exciting new era of battery technology, it’s clear that Su-Il In’s revolutionary nuclear battery is poised to change the world, one device at a time.

Automotive and Transportation

Breakthrough in Green Hydrogen Production: Triple-Layer Catalyst Supercharges Energy Yield by 800%

Researchers in Sweden have developed a powerful new material that dramatically boosts the ability to create hydrogen fuel from water using sunlight, making the process eight times more effective than before. This breakthrough could be key to fueling heavy transport like ships and planes with clean, renewable energy.

Avatar photo

Published

on

By

A team of scientists at Linköping University in Sweden has made a groundbreaking discovery in the production of green hydrogen, a promising renewable energy source. By developing a new triple-layer material, they have supercharged the energy yield by an impressive 800%.

Hydrogen produced from water is becoming increasingly important as the world shifts away from fossil fuels. The EU plans to ban new petrol and diesel car sales by 2035, making electric motors more common in vehicles. However, heavy trucks, ships, and aircraft require alternative energy sources, where hydrogen comes into play.

The researchers have previously shown that cubic silicon carbide (3C-SiC) has beneficial properties for facilitating the reaction where water is split into hydrogen and oxygen. Now, they’ve further developed a combined material consisting of three layers: a layer of 3C-SiC, a layer of cobalt oxide, and a catalyst material that helps to split water.

The new material, known as Ni(OH)2/Co3O4/3C-SiC, has demonstrated eight times better performance than pure cubic silicon carbide for splitting water into hydrogen. When sunlight hits the material, electric charges are generated, which are then used to split water. By combining the three layers, the researchers have improved the ability to separate positive and negative charges, making the splitting of water more effective.

The distinction between “grey” and “green” hydrogen is crucial in this context. Almost all hydrogen present on the market is “grey” hydrogen produced from fossil fuels, with significant environmental consequences. In contrast, “green” hydrogen is produced using renewable electricity as a source of energy.

Linköping University researchers aim to utilize only solar energy to drive the photochemical reaction to produce “green” hydrogen. Currently, materials under development have an efficiency of between 1 and 3 per cent, but for commercialization, the target is 10% efficiency. The research team estimates that it may take around five to ten years to develop materials that reach this coveted limit.

The study has been funded by several organizations, including the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Olle Engkvists Stiftelse, the ÅForsk Foundation, the Carl Tryggers Stiftelse, and through the Swedish Government Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.

This breakthrough has the potential to significantly impact the renewable energy landscape, making green hydrogen production more efficient and cost-effective. As researchers continue to push the boundaries of this technology, we can expect even more exciting developments in the future.

Continue Reading

Batteries

Unlocking the Potential of Solid-State Batteries

Researchers have discovered that the mixing of small particles between two solid electrolytes can generate an effect called a ‘space charge layer,’ an accumulation of electric charge at the interface between the two materials. The finding could aid the development of batteries with solid electrolytes, called solid-state batteries, for applications including mobile devices and electric vehicles.

Avatar photo

Published

on

By

The development of solid-state batteries has been gaining momentum in recent years, promising safer and more powerful alternatives to traditional lithium-ion batteries. A team of researchers from the University of Texas at Dallas has made a significant breakthrough in this field by discovering that mixing small particles between two solid electrolytes can generate an effect called a “space charge layer.” This accumulation of electric charge at the interface between the materials has been found to create pathways that make it easier for ions to move across, potentially leading to better-performing solid-state batteries.

The researchers, led by Dr. Laisuo Su and Dr. Kyeongjae Cho, published their study in ACS Energy Letters, where it was featured on the cover of the March issue. They discovered that when the separate solid electrolyte materials make physical contact, a layer forms at their boundary where charged particles, or ions, accumulate due to differences in each material’s chemical potential.

“Imagine mixing two ingredients in a recipe and unexpectedly getting a result that is better than either ingredient alone,” Dr. Su explained. “This effect boosted the movement of ions beyond what either material could achieve by itself.”

The research is part of the university’s Batteries and Energy to Advance Commercialization and National Security (BEACONS) initiative, which aims to develop and commercialize new battery technology and manufacturing processes. The team’s findings suggest a new way to design better solid electrolytes by carefully choosing materials that interact in a way that enhances ionic movement.

Solid-state batteries show promise for generating and storing more than twice as much power as batteries with liquid electrolytes, while being safer because they are not flammable. However, the development of solid-state batteries faces challenges due to difficulties in moving ions through solid materials.

The researchers plan to continue studying how the composition and structure of the interface lead to greater ionic conductivity. This breakthrough has the potential to unlock the full potential of solid-state batteries, enabling advanced battery systems that can improve the performance of drones for defense applications.

In conclusion, the discovery of the space charge layer phenomenon offers a promising new direction for the development of solid-state batteries. By understanding and harnessing this effect, researchers may be able to create more efficient and powerful batteries that meet the growing demands of mobile devices, electric vehicles, and other applications.

Continue Reading

Alternative Fuels

EV Battery Recycling Key to Future Lithium Supplies

Lightweight, powerful lithium-ion batteries are crucial for the transition to electric vehicles, and global demand for lithium is set to grow rapidly over the next 25 years. A new analysis looks at how new mining operations and battery recycling could meet that demand. Recycling could play a big role in easing supply constraints, the researchers found.

Avatar photo

Published

on

By

The world’s transition to electric vehicles is driving demand for lithium, a crucial mineral used in lightweight and powerful lithium-ion batteries. A recent analysis from the University of California, Davis, has shed light on how new mining operations and battery recycling could meet this growing demand. Recycling, it turns out, plays a significant role in easing supply constraints.

“Batteries are an enormous new source of demand for lithium,” says Alissa Kendall, Ray B. Krone endowed professor of Environmental Engineering at UC Davis and senior author on the paper. “Global demand for lithium has risen dramatically – by 30% between 2022 and 2023 alone – as adoption of electric vehicles continues.”

Previous research has focused on forecasting cumulative demand over the next 30 years compared to what is known to be in the ground, says graduate student Pablo Busch, first author on the paper. However, opening a new lithium mine is a potentially billion-dollar investment that could take 10 to 15 years to begin production.

New mining proposals can be delayed or cancelled by environmental regulations and local opposition. “It’s not just about having enough lithium; it’s how fast you can extract it,” Busch notes. “Any supply disruption will slow down electric vehicle adoption, reducing mobility access and extending the operation of combustion engine vehicles and their associated carbon emissions.”

There are three main sources of usable lithium: briny water from deep underground; rocks; and sedimentary clays. Half the world’s lithium currently comes from Australia, where it is mostly mined from rock. The United States has lithium-rich brine in geothermal areas and oilfields, as well as lithium-bearing clay.

A fourth source of lithium – recycling old batteries – is still a relatively expensive process compared to mining, Kendall notes. However, modeling supply and demand shows that recycling could dramatically reduce the need for new mines. Under high-demand scenarios, up to 85 new and additional lithium deposits would need to be opened by 2050. But through policies that push the market toward smaller batteries and extensive global recycling, this number could be reduced to as few as 15 new mines.

Battery recycling has an outsize effect on the market, the researchers say. “Recycling is really important for geopolitical and environmental reasons,” Kendall notes. “If you can meet a small percentage of demand with recycling, it can have a big impact on the need for new mines.”

Timing is everything; some new mines need to open to create a flow of lithium that can be recycled. Depending on the demand scenario, recycling would make the biggest difference around 2035.

Efficiency standards for electric cars and improvements to the public charging network to reduce “range anxiety” could also moderate lithium demand by encouraging smaller cars. Additional authors include Yunzhu Chen and Prosper Ogbonna, both at UC Davis, with funding from the Heising-Simons Foundation and the ClimateWorks Foundation.

Continue Reading

Trending