Connect with us

Computers & Math

Unlocking the Secret Spring in Your Step

Researchers reveal the way our legs adapt to fast movements. When people hop at high speeds, key muscle fibers in the calf shorten rather than lengthen as forces increase, which they call ‘negative stiffness.’ This counterintuitive process helps the leg become stiffer, allowing for faster motion. The findings could improve training, rehabilitation, and even the design of prosthetic limbs or robotic exoskeletons.

Avatar photo

Published

on

Unlocking the secret spring in your step is more than just a metaphor; it’s a real phenomenon that researchers at the University of Tokyo have been studying. When we hop, run, or jump, our legs behave like springs, absorbing and returning energy with each step. But what makes this possible? And how can understanding this process improve training, rehabilitation, and even prosthetic limb design?

Associate Professor Daisuke Takeshita and doctoral student Kazuki Kuriyama from the Department of Life Sciences set out to investigate how muscles and tendons work together during bouncing movements, specifically hopping. They discovered that muscle fibers behave differently depending on the hopping frequency. During slow hopping, muscle fibers maintain nearly constant length. However, during fast hopping, they actively shorten even as force increases, displaying what they call negative stiffness.

This counterintuitive behavior enhances the overall stiffness of the leg, allowing for faster movements. The researchers believe their findings provide a new framework for understanding muscle function during various activities and open new avenues for research in sports science, rehabilitation medicine, and biomechanical engineering.

To carry out this investigation, Takeshita and Kuriyama had to integrate different sensing apparatus that don’t normally go together for this kind of purpose. They built a synchronized measurement system including ultrasound imaging with motion capture and force plate data. The process was incredibly time-consuming and labor-intensive, requiring meticulous attention to detail.

The action of hopping helped the researchers design appropriate observational experiments, as the activity is naturally spatially constrained and has fewer variables than something less bound. But they do intend to take their ideas out of the lab and on to the running track one day, as this will allow them to study more generally how lower leg muscles work their magic and propel athletes forward.

And this kind of study could feed into the body of knowledge which athletes and trainers draw from to provide more effective training, which in turn can help those involved in rehabilitation. These future directions will help bridge the gap between basic biomechanical principles observed in simplified laboratory tasks and the complex, real-world movements that humans perform in daily life and athletic activities.

Artificial Intelligence

“Paws-itive Progress: Amphibious Robotic Dog Breaks Ground in Mobility and Efficiency”

A team of researchers has unveiled a cutting-edge Amphibious Robotic Dog capable of roving across both land and water with remarkable efficiency.

Avatar photo

Published

on

The field of robotics has taken a significant leap forward with the development of an amphibious robotic dog, capable of efficiently navigating both land and water. This innovative creation was inspired by the remarkable mobility of mammals in aquatic environments.

Unlike existing amphibious robots that often draw inspiration from reptiles or insects, this robotic canine is based on the swimming style of dogs. This design choice has allowed it to overcome several limitations faced by insect-inspired designs, such as reduced agility and load capacity.

The key to the amphibious robot’s water mobility lies in its unique paddling mechanism, modeled after the natural swimming motion of dogs. By carefully balancing weight and buoyancy, the engineers have ensured stable and effective aquatic performance.

To test its capabilities, the researchers developed and experimented with three distinct paddling gaits:

* A doggy paddle method that prioritizes speed
* A trot-like style that focuses on stability
* A third gait that combines elements of both

Through extensive experimentation, it was found that the doggy paddle method proved superior for speed, achieving a maximum water speed of 0.576 kilometers per hour (kph). On land, the amphibious robotic dog reaches speeds of 1.26 kph, offering versatile mobility in amphibious environments.

“This innovation marks a big step forward in designing nature-inspired robots,” says Yunquan Li, corresponding author of the study. “Our robot dog’s ability to efficiently move through water and on land is due to its bioinspired trajectory planning, which mimics the natural paddling gait of real dogs.”

The implications of this technology are vast and exciting, with potential applications in environmental research, military vehicles, rescue missions, and more. As we continue to push the boundaries of what’s possible with robotics, it’s clear that the future holds much promise for innovation and discovery.

Continue Reading

Computers & Math

A Breakthrough in AR Glasses: One Glass, Full Color

Augmented-reality (AR) technology is rapidly finding its way into everyday life, from education and healthcare to gaming and entertainment. However, the core AR device remains bulky and heavy, making prolonged wear uncomfortable. A breakthrough now promises to change that. A research team has slashed both thickness and weight using a single-layer waveguide.

Avatar photo

Published

on

By

A breakthrough in augmented-reality (AR) technology has been made by POSTECH researchers, which could revolutionize the way we interact with everyday life. The core AR device, typically bulky and heavy, can now be designed to be thin and light, making prolonged wear comfortable.

One of the main hurdles to commercializing AR glasses was the waveguide, a crucial component that guides virtual images directly to the user’s eye. Conventional designs required separate layers for red, green, and blue light, leading to increased weight and thickness. POSTECH researchers have eliminated this need by developing an achromatic metagrating that handles all colors in a single glass layer.

The key to this innovation lies in an array of nanoscale silicon-nitride pillars whose geometry was finely tuned using a stochastic topology-optimization algorithm to steer light with maximum efficiency. In experiments, the researchers produced vivid full-color images using a 500-µm-thick single-layer waveguide – about one-hundredth the diameter of a human hair.

The new design erases color blur while outperforming multilayer optics in brightness and color uniformity. This breakthrough has significant implications for the commercialization of AR glasses, which could become as thin and light as ordinary eyewear. The era of truly everyday AR is now within reach.

“This work marks a key milestone for next-generation AR displays,” said Prof. Junsuk Rho. “Coupled with scalable, large-area fabrication, it brings commercialization within reach.”

The study was carried out by POSTECH’s Departments of Mechanical, Chemical and Electrical Engineering and the Graduate School of Interdisciplinary Bioscience & Bioengineering, in collaboration with the Visual Team at Samsung Research. It was published online on April 30, 2025, in Nature Nanotechnology.

This research was supported by POSCO Holdings N.EX.T Impact, Samsung Research, the Ministry of Trade, Industry and Energy’s Alchemist Project, the Ministry of Science and ICT’s Global Convergence Research Support Program, and the Mid-Career Researcher Program.

Continue Reading

Communications

Tailoring Social Media to Fit Your Needs: A New Approach to Making Online Time More Fulfilling

Redesigning social media to suit different needs of users could make their time online more focused, according to new research.

Avatar photo

Published

on

By

The study, conducted by University of Bristol academics, has shed light on the importance of tailoring social media to suit individual needs. By categorizing users into distinct groups based on their motivations and behaviors, researchers have found that finding the right level of personal investment is key to a positive experience online.

The research revealed three main user types:

1. Those who browse without strong intentionality, often mindlessly scrolling through feeds.
2. Those deeply invested in their online lives, potentially leading to compulsive use and negative consequences for well-being.
3. Those who see value in using social media but retain personal distance, arguably having the best outcomes overall.

The findings suggest that social media platforms could be redesigned to support more intentional use by introducing customized features tailored to different user needs. This approach has the potential to help users regain control over their time online and make it more purposeful and valued.

By adapting interfaces to align with individual well-being, social media platforms can promote sustainable engagement connected to things that matter to the user, rather than just maximizing screen time. The implications of this work extend beyond social media design into technology use more broadly, offering a data-driven approach to promoting digital self-regulation and overall well-being.

The next phase of this research will explore how social media platforms can identify different user groups and adapt interfaces to support intentional online engagement that prioritizes personal well-being.

Continue Reading

Trending