Connect with us

Alzheimer's Research

Detecting the Invisible: A New Method for Identifying Nanoplastics in Body Fluids

Microplastics and the much smaller nanoplastics enter the human body in various ways, for example through food or the air we breathe. A large proportion is excreted, but a certain amount remains in organs, blood and other body fluids. Scientists have now been able to develop a method for detecting and quantifying nanoplastics in transparent body fluids and determining their chemical composition.

Avatar photo

Published

on

The presence of microplastics and even smaller nanoplastics in our bodies is a growing concern. These tiny particles can enter our system through food, air, or other means, but fortunately, most of them are excreted by our bodies. However, some amount remains lodged in organs, blood, and other bodily fluids. In an effort to understand the impact of nanoplastics on human health, particularly in ophthalmology, a team at Graz University of Technology (TU Graz) has been working on a project called Nano-VISION.

The research team, led by Harald Fitzek from the Institute of Electron Microscopy and Nanoanalysis, in collaboration with an ophthalmologist from Graz and a start-up company named BRAVE Analytics, has successfully developed a method for detecting and quantifying nanoplastics in transparent body fluids. This breakthrough is significant, especially since there have been no studies on intraocular lenses releasing nanoplastics.

The innovative method combines two techniques: optofluidic force induction and Raman spectroscopy. The first technique involves shining a weakly focused laser through the liquid being analyzed, causing particles to accelerate or decelerate based on their size. This allows researchers to determine the concentration of micro- and nanoplastics in the liquid.

What’s new is the addition of Raman spectroscopy, which analyzes the spectrum of the laser light scattered by individual particles in the liquid. Depending on the material composition of these particles, the frequency values are slightly different, revealing their chemical composition. This method works particularly well with organic materials and plastics.

The team at TU Graz has been conducting further investigations into how intraocular lenses yield nanoplastics spontaneously or when exposed to mechanical stress or laser energy. These findings will be crucial for ophthalmic surgeons and lens manufacturers and will be published in a scientific journal.

The implications of this research are far-reaching, not just for the field of ophthalmology but also for industries and our environment. The method developed by this team can be applied to continuously monitor liquid flows in various sectors, from drinking water to waste management.

Alzheimer's

The Key to Protein Quality: Unraveling the Role of P97/VCP Enzyme

In neurodegenerative diseases such as Alzheimer’s or Parkinson’s, proteins accumulate in the body’s cells, fold incorrectly and clump together to form larger aggregates. Normally, cells are able to remove these aggregates themselves. However, if a certain enzyme is blocked, this clean-up process no longer works. The new findings provide a better understanding of the molecular basis of these processes.

Avatar photo

Published

on

The intricate dance of protein quality control within cells has been revealed by researchers led by biochemist Alexander Buchberger at Julius-Maximilians-Universität Würzburg (JMU). A recent study published in Nature Communications sheds light on the crucial role played by the ubiquitin-selective unfoldase p97/VCP enzyme in eliminating malformed proteins and aggresomes.

In cells, proteins are constantly being produced, assembled, transported, and broken down. This delicate balance is vital to prevent serious illnesses, as even small changes can have devastating consequences. To maintain this balance, cells have developed complex systems to control protein quality. One such system involves the formation of aggresomes – a type of cage that collects and isolates proteins prone to clumping.

While the formation of aggresomes has been extensively studied, their protein content and degradation pathways remained poorly characterized. The recent study changes this by revealing that the breakdown of aggresomes requires multiple players, with p97/VCP enzyme emerging as the most critical.

The researchers conducted experiments blocking p97/VCP enzyme and observed that aggresomes no longer disintegrated and were destroyed. This indicates that p97/VCP plays a pivotal role in breaking down aggresomes into smaller components. The findings have significant biomedical implications, particularly for understanding neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s disease.

Mutations in the p97/VCP enzyme cause neuro-muscular degenerative diseases, including certain forms of dementia and ALS – amyotrophic lateral sclerosis. Moreover, disrupted degradation processes within cells could also contribute to Parkinson’s disease, which is characterized by Lewy bodies – roundish inclusions containing harmful protein deposits that disrupt nerve cell metabolism.

The research team concludes that their findings suggest mutations in the p97/VCP enzyme disrupt aggresome degradation, potentially contributing to Lewy body formation and neuro-muscular degenerative diseases. This study highlights the importance of understanding protein quality control mechanisms within cells and how disruptions in these processes can lead to devastating diseases.

Continue Reading

Alzheimer's

The Surprising Link Between Curiosity and Healthy Aging

Psychology literature has shown that curiosity tends to decline with age. Psychologists shows one type of curiosity can increase well into old age, contradicting prior research. Older adults who maintain curiosity and want to learn new things relevant to their interests may be able to offset or even prevent Alzheimer’s disease. Conversely, those who show muted curiosity and disinterest may be at risk for dementia.

Avatar photo

Published

on

The secret to aging successfully may not be what you think. Instead of focusing on physical exercise or mental stimulation alone, research suggests that cultivating curiosity can play a significant role in maintaining cognitive health and even preventing Alzheimer’s disease. An international team of psychologists has found that older adults who maintain a curious mindset and seek out new knowledge relevant to their interests may be able to offset or prevent dementia.

This finding challenges prior research that suggested curiosity decreases with age. The study, published in the journal PLOS One, was led by UCLA psychologist Alan Castel and involved a large sample of participants between the ages of 20 and 84. The researchers aimed to tease apart two types of curiosity: trait curiosity (a general level of inquisitiveness) and state curiosity (a momentary feeling of curiosity experienced when engaging with specific topics).

To assess these forms of curiosity, the researchers asked participants to complete an online questionnaire and guess answers to hard trivia questions. Analysis showed that while trait curiosity did decline across the adult lifespan, state curiosity increased sharply after middle age and continued upward well into old age.

The study’s lead author, Mary Whatley, notes that this finding may be related to selectivity theory, which suggests that as people get older, they become more selective about what they want to learn. This aligns with research on lifelong learning, where many older adults engage in activities like taking classes or picking up hobbies.

Castel’s own work on memory has shown that people tend to quickly forget information that doesn’t engage their curiosity. Anecdotally, many older adults report that staying curious is crucial for maintaining cognitive health and preventing dementia.

This study was supported by the National Institutes of Health’s National Institute on Aging, the Leverhulme Trust, and the Alexander von Humboldt Foundation. The findings suggest that cultivating curiosity can be a key factor in healthy aging and may even help prevent or offset Alzheimer’s disease.

Continue Reading

Alzheimer's

“Unlocking Brain Resilience: Researchers Discover CLU Protein’s Potential to Protect Against Alzheimer’s Disease”

Recently approved Alzheimer’s drugs offer a step forward for treating the disease, but new therapeutic strategies are needed to complement them and provide personalized therapeutic approaches. Researchers have identified a potential strategy to protect against Alzheimer’s disease by increasing the clusterin protein (CLU).

Avatar photo

Published

on

As scientists continue to search for effective treatments for Alzheimer’s disease, a recent study has shed light on a promising new approach. Researchers at Mass General Brigham have discovered that increasing levels of the “CLU” (clusterin) protein may protect against cognitive decline and potentially provide a complementary therapy to existing treatments.

Led by Dr. Tracy Young-Pearse, the research team used various models, including human brain tissue from over 700 participants and animal models, to uncover the molecular role of CLU in protecting against neurodegeneration. Their findings suggest that increasing CLU can prevent inflammatory interactions between brain cells called astrocytes and microglia, which are associated with heightened inflammation.

The study’s results have significant implications for the design and testing of new therapeutic strategies for Alzheimer’s disease. As Dr. Young-Pearse noted, “Increasing clusterin has the potential to prevent cognitive decline in a way that is different than and complementary to anti-amyloid therapies to promote brain resilience.”

CLU may also be beneficial for treating other age-related brain diseases, many of which share similar mechanisms of neuroinflammatory dysregulation. The researchers emphasize the importance of personalized therapeutic approaches, as individuals’ responses to CLU upregulation vary based on their genetics.

The study’s findings provide a crucial step forward in the search for effective treatments for Alzheimer’s disease and other age-related brain diseases. By understanding the role of CLU in protecting against neurodegeneration, researchers can develop new strategies to promote brain resilience and potentially prevent cognitive decline.

In conclusion, the discovery of CLU’s potential therapeutic benefits offers new hope for individuals affected by Alzheimer’s disease and other age-related brain disorders. Further research is necessary to fully explore this promising approach, but the findings of this study mark an important milestone in the pursuit of effective treatments for these debilitating diseases.

Continue Reading

Trending