Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alternative Fuels

“Beyond Conventional Thinking: Unlocking the Potential of Single Atom Catalysts with Hydrogen Binding Energy”

Conventional thinking holds that the metal site in single atom catalysts (SACs) has been a limiting factor to the continued improvement of the design and, therefore, the continued improvement of the capability of these SACs. More specifically, the lack of outside-the-box thinking when it comes to the crucial hydrogen evolution reaction (HER), a half-reaction resulting in the splitting of water, has contributed to a lack of advancement in this field. New research emphasizes the importance of pushing the limits of the metal site design in SACs to optimize the HER and addressing the poisoning effects of HO* and O* that might affect the reaction. All of these improvements could lead to an improved performance of the reaction, which can make sustainable energy storage or hydrogen production more available.

Avatar photo

Published

on

The world is shifting towards renewable energy sources, and hydrogen-based technologies are gaining attention. However, a new study suggests that the conventional thinking on single atom catalysts (SACs) might be limiting their potential. Researchers have found that the metal site in SACs can be improved by pushing the limits of design, optimizing the hydrogen evolution reaction (HER), and addressing the poisoning effects of HO* and O*. This breakthrough could lead to more efficient energy storage or hydrogen production.

Single atom catalysts are catalytically active metal sites distributed at the atomic level to enhance catalytic activity. However, hydroxyl radical (HO*) and oxygen radical (O*) poisoning can alter molecules and degrade performance. In contrast, sites where hydrogen molecules don’t readily accumulate can lead to an enhancing effect of the catalyst.

Researchers have discovered that HO* poisoning, realistic H* adsorption strengths at active metal sites, and the potential HER activity at coordinating N-sites are crucial factors to consider for accurate descriptor development. By effectively modifying these factors, more efficient catalysts can be developed to improve HER activity while not relying on conventional design of metal binding sites.

The study found that hydrogen binding energy (HBE) calculation under a realistic representation of accumulated molecules (adsorption) can serve as a good predictor of HER activity. Additionally, the combination of using HBE and Gibbs free energy as descriptors for SACs provides new guidelines for those working with this catalyst design.

This work addresses the long-lasting debate on HER descriptors and provides new methods to break out of conventional limitations put on by using just hydrogen binding energy as a solo descriptor. The researchers aim to further address the limitations of HO poisoning and develop novel single- and dual-atom catalysts for different pH conditions, especially in alkaline environments.

In conclusion, this study opens up new possibilities for SACs, highlighting the importance of pushing design limits, optimizing HER, and addressing poisoning effects. By doing so, researchers can unlock the full potential of SACs and contribute to more efficient energy storage or hydrogen production.

Alternative Fuels

Breaking Ground in Green Energy: An Iron Oxide Catalyst for Efficient Hydrogen Production

As the world shifts toward sustainable energy sources, ‘green hydrogen’ – hydrogen produced without emitting carbon – has emerged as a leading candidate for clean power. Scientists have now developed a new iron-based catalyst that more than doubles the conversion efficiency of thermochemical green hydrogen production.

Avatar photo

Published

on

By

As the world shifts toward sustainable energy sources, “green hydrogen” has emerged as a leading candidate for clean power. A collaborative research team led by Professor Hyungyu Jin and Professor Jeong Woo Han has made a significant breakthrough in developing an iron-based catalyst that more than doubles the conversion efficiency of thermochemical green hydrogen production.

Generate an image depicting a scientist holding a small, futuristic-looking device with a glowing blue screen. In the background, there’s a subtle representation of a globe with a clean energy symbol (such as wind turbines or solar panels) integrated into it. The scene should convey a sense of innovation and sustainability.

The article explains how growing concerns over fossil fuel-driven pollution and climate change have led to increased attention on hydrogen as a clean energy carrier that only emits water upon combustion. Among various hydrogen production pathways, thermochemical water splitting is considered particularly promising due to its potential for high efficiency and low environmental impact.

However, most conventional oxides used in this process suffer from the limitation of requiring extremely high temperatures to operate effectively. To address this challenge, the research team developed a novel iron-poor nickel ferrite (Fe-poor NiFe2O4, or NFO) that exhibits a distinct phase transformation mechanism enabling greater oxygen capacity even at lower temperatures.

Experimental results showed that the novel oxides achieved a water-to-hydrogen conversion efficiency of 0.528% per gram of oxides – more than double the previous best-performing material’s benchmark of 0.250%. What makes this study particularly noteworthy is not only the development of a high-efficiency catalyst but also the team’s success in unraveling the underlying mechanisms.

Using a combination of experimental techniques and computational simulations, the researchers identified the “structural active sites” within iron oxide materials that drive hydrogen production at the atomic level. They further revealed that a redox swing between two types of iron sites is directly correlated with hydrogen yield – an insight that could guide the future design of even more effective catalysts.

This research has significant implications for the development of sustainable energy sources, and it was supported by several organizations, including the Circle Foundation for Innovation Science and Technology Program, the National Research Foundation of Korea, and the Korea Institute of Materials Science.

Continue Reading

Alternative Fuels

EV Battery Recycling Key to Future Lithium Supplies

Lightweight, powerful lithium-ion batteries are crucial for the transition to electric vehicles, and global demand for lithium is set to grow rapidly over the next 25 years. A new analysis looks at how new mining operations and battery recycling could meet that demand. Recycling could play a big role in easing supply constraints, the researchers found.

Avatar photo

Published

on

By

The world’s transition to electric vehicles is driving demand for lithium, a crucial mineral used in lightweight and powerful lithium-ion batteries. A recent analysis from the University of California, Davis, has shed light on how new mining operations and battery recycling could meet this growing demand. Recycling, it turns out, plays a significant role in easing supply constraints.

“Batteries are an enormous new source of demand for lithium,” says Alissa Kendall, Ray B. Krone endowed professor of Environmental Engineering at UC Davis and senior author on the paper. “Global demand for lithium has risen dramatically – by 30% between 2022 and 2023 alone – as adoption of electric vehicles continues.”

Previous research has focused on forecasting cumulative demand over the next 30 years compared to what is known to be in the ground, says graduate student Pablo Busch, first author on the paper. However, opening a new lithium mine is a potentially billion-dollar investment that could take 10 to 15 years to begin production.

New mining proposals can be delayed or cancelled by environmental regulations and local opposition. “It’s not just about having enough lithium; it’s how fast you can extract it,” Busch notes. “Any supply disruption will slow down electric vehicle adoption, reducing mobility access and extending the operation of combustion engine vehicles and their associated carbon emissions.”

There are three main sources of usable lithium: briny water from deep underground; rocks; and sedimentary clays. Half the world’s lithium currently comes from Australia, where it is mostly mined from rock. The United States has lithium-rich brine in geothermal areas and oilfields, as well as lithium-bearing clay.

A fourth source of lithium – recycling old batteries – is still a relatively expensive process compared to mining, Kendall notes. However, modeling supply and demand shows that recycling could dramatically reduce the need for new mines. Under high-demand scenarios, up to 85 new and additional lithium deposits would need to be opened by 2050. But through policies that push the market toward smaller batteries and extensive global recycling, this number could be reduced to as few as 15 new mines.

Battery recycling has an outsize effect on the market, the researchers say. “Recycling is really important for geopolitical and environmental reasons,” Kendall notes. “If you can meet a small percentage of demand with recycling, it can have a big impact on the need for new mines.”

Timing is everything; some new mines need to open to create a flow of lithium that can be recycled. Depending on the demand scenario, recycling would make the biggest difference around 2035.

Efficiency standards for electric cars and improvements to the public charging network to reduce “range anxiety” could also moderate lithium demand by encouraging smaller cars. Additional authors include Yunzhu Chen and Prosper Ogbonna, both at UC Davis, with funding from the Heising-Simons Foundation and the ClimateWorks Foundation.

Continue Reading

Alternative Fuels

Unveiling Electron Secrets: A Groundbreaking Experiment on the Bound Electron g-Factor in Lithium-Like Tin

Researchers present new experimental and theoretical results for the bound electron g-factor in lithium-like tin which has a much higher nuclear charge than any previous measurement. The experimental accuracy reached a level of 0.5 parts per billion. Using an enhanced interelectronic QED method, the theoretical prediction for the g-factor reached a precision of 6 parts per billion.

Avatar photo

Published

on

By

Unveiling Electron Secrets: A Groundbreaking Experiment on the Bound Electron g-Factor in Lithium-Like Tin

Physicists at the Max Planck Institute for Nuclear Physics have achieved a groundbreaking experiment that pushes the limits of precision measurement. By studying the bound electron g-factor in lithium-like tin, they have made an unprecedented leap forward in our understanding of quantum electrodynamics (QED). This fundamental theory describes all electromagnetic phenomena, including light and its interactions with matter.

The researchers’ goal was to test QED’s predictions even more rigorously than ever before. They employed an enhanced interelectronic QED method, incorporating effects up to the two-loop level, which has led to a 25-fold improvement over previous calculations for the g-factor in hydrogen-like systems.

To measure the g-factor of the bound electron in lithium-like tin, the scientists utilized the cryogenic Penning trap ALPHATRAP. This sophisticated device allows precise control over the ion’s motion and spin precession. By detecting small electric signals induced by the ion’s movement and sending microwave radiation to induce spin flips, they extracted the g-factor value with remarkable accuracy.

The experimental result agrees well with the theoretical prediction within the uncertainty of the calculation. The overall accuracy achieved is 0.5 parts per billion, showcasing the precision of this experiment. This breakthrough demonstrates that scientists can continue to test QED’s predictions and push the boundaries of human knowledge in understanding the fundamental forces of nature.

The researchers’ findings have significant implications for the development of new theories and models. They demonstrate that even more precise measurements are possible with advancements in technology and theory. As a result, this experiment sets the stage for further investigations into QED phenomena, such as parity non-conserving transitions in neutral atoms and other effects.

In conclusion, this groundbreaking experiment on the bound electron g-factor in lithium-like tin has pushed the limits of precision measurement, providing new insights into QED’s predictions. The scientists’ dedication to collaborative research and innovative techniques has led to a significant leap forward in our understanding of quantum mechanics and its interactions with matter.

Continue Reading

Trending