Connect with us

Civil Engineering

Revolutionizing Fabrication: Transformable Objects Created Using Sewing Technology

Researchers introduced a novel method for fabricating functional flat-to-shape objects using a computer-controlled sewing machine. The team’s method uses the sewing machine to stitch pockets between layers of fabric, and stiff panels are inserted into the pockets. Multiple fabrics types can be used, ranging from muslin for heavy-duty applications to more delicate fabrics for decorative purposes. The materials can also be customized on a panel-by-panel basis to adapt to each object’s needs. The researchers demonstrated how the materials can be chosen to support a variety of functional goals, such as using thicker plywood for a human-weight supporting chair and custom LED panels with sheer fabric for a functional lamp. Additionally, The technique also allows for additional mechanisms such as cords, magnets, and hook-and-loop fasteners to direct and stabilize flat-to-shape transitions.

Avatar photo

Published

on

The Human Computer Interaction Institute (HCII) and Robotics Institute (RI) at Carnegie Mellon University have made a groundbreaking discovery that’s set to revolutionize the way we think about fabricating functional objects. Researchers Sapna Tayal, Lea Albaugh, Mark Stehlik, James McCann, and Scott E. Hudson have developed a novel method for creating transformable flat-to-shape objects using a computer-controlled sewing machine.

The concept of “flat-to-shape” refers to objects that can be transformed from a two-dimensional sheet into a three-dimensional form through methods like bending, folding, or assembling connected parts. Previous techniques have been limited in scale and often required time-consuming manual assembly. However, the CMU team has successfully scaled up these methods using sewing technology.

“We saw an opportunity to build on existing techniques and create a method for making furniture-sized functional and quick-to-deploy objects,” said Albaugh. “Sewing machines are an accessible fabrication technology that can be used in new ways.”

The researchers used a computer-controlled sewing machine to stitch pockets between layers of fabric, allowing stiff panels to be inserted into the pockets. This innovative approach enables the use of various fabric types, from muslin for heavy-duty applications to more delicate fabrics for decorative purposes. Additionally, materials can be customized on a panel-by-panel basis to adapt to each object’s specific needs.

The team demonstrated how their technique can be used to create functional objects such as chairs, lamps, and backpacks by choosing the right materials for various goals. They also explored additional mechanisms like cords, magnets, and hook-and-loop fasteners to direct and stabilize flat-to-shape transitions.

Tayal, a design student, was thrilled to refine and explain this process in a research context. “It was a fun experience to describe a new kind of fabrication space through material exploration and hands-on making,” she said.

The novel method has allowed the researchers to achieve their goal of creating items that are large enough for whole-body human interactions while being portable and adaptable to multiple settings. Their paper, titled “Creating Furniture-Scale Deployable Objects with a Computer-Controlled Sewing Machine,” was accepted to the 2025 Conference on Human Factors in Computing Systems (CHI).

This groundbreaking project has been recognized by the Industrial Designers Society of America (IDSA) as part of Tayal’s winning Student Merit Award presentation. To learn more about the flat-to-shape objects and find the full paper, visit Tayal’s website.

Artificial Intelligence

The Hidden Barrier to Advanced Robotic Touch

Researchers argue that the problem that has been lurking in the margins of many papers about touch sensors lies in the robotic skin itself.

Avatar photo

Published

on

By

The development of advanced robotic touch has been hindered by a seemingly innocuous yet critical issue – the insulating layer in robotic skin. Researchers at Northwestern University and Tel Aviv University have successfully overcome this barrier, paving the way for low-cost solutions that enable robots to mimic human touch.

In their study, the researchers observed that inexpensive silicon rubber composites used to make robotic skin host an insulating layer on both top and bottom surfaces. This prevents direct electrical contact between the sensing polymer and the monitoring surface electrodes, making accurate and repeatable measurements impossible. By eliminating this error, cheap robotic skins can now allow robots to sense an object’s curves and edges, essential for proper grasping.

The research team, consisting of electrical engineers and polymer materials scientists, shed light on this problem in a paper published in Advanced Electronic Materials. The study highlights the importance of validating electrical contacts, which might unknowingly obscure device performance.

“A lot of scientists misunderstand their sensor response because they lump together the behavior of the contacts with the behavior of the sensor material, resulting in inconsistent data,” said Matthew Grayson, professor of electrical and computer engineering at Northwestern’s McCormick School of Engineering. “Our work identifies the exact problem, quantifies its extent both microscopically and electrically, and gives a clear step-by-step trouble-shooting manual to fix the problem.”

The researchers detected that adding electrically conducting fillers like carbon nanotubes to rubber composites creates an ideal candidate for touch sensors. However, this material needs electrical signals, which are blocked by the insulating layer. By sanding down the ultrathin insulation layer, the team achieved a stronger electrical contact and calibrated the thickness of the insulating layer.

The collaboration between Northwestern University and Tel Aviv University is essential in addressing the “contact preparation” challenge. The researchers relied on each other’s expertise to prepare materials and study their properties, leading to consistent results across various variables.

As awareness spreads among researchers about the issue of reproducibility in touch sensing literature, new publications can be more rigorously relied upon to advance the field with new capabilities. The research was supported by various organizations, including the U.S. National Science Foundation, Northwestern University, and Tel Aviv University through the Center for Nanoscience & Nanotechnology.

The breakthrough has significant implications for robotics development, enabling robots to sense and interact with their environment more effectively. By overcoming this critical barrier, researchers have opened up new possibilities for advanced robotic touch, paving the way for future innovations in robotics and beyond.

Continue Reading

Aerospace

“Challenging the Classics: Researchers Reveal New Insights into Material Deformation under Stress”

Scientists have expanded on a longstanding model governing the mechanics behind slip banding, a process that produces strain marks in metals under compression, gaining a new understanding of the behavior of advanced materials critical to energy systems, space exploration and nuclear applications.

Avatar photo

Published

on

By

Researchers at the University of California, Irvine (UCI) have made a groundbreaking discovery in the field of materials science. By expanding on a classic model developed over 70 years ago, scientists in UCI’s Samueli School of Engineering have gained new insights into the behavior of advanced materials critical to energy systems, space exploration, and nuclear applications.

The traditional Frank-Read theory attributed slip band formation to continuous dislocation multiplication at active sources. However, the UC Irvine team found that extended slip bands emerge from source deactivation followed by the dynamic activation of new dislocation sources. This process was observed at the atomic scale through mechanical compression on micropillars made of a chromium-cobalt-nickel alloy.

Using advanced microscopy techniques and large-scale atomistic modeling, researchers were able to visualize the confined slip band as a thin glide zone with minimal defects and the extended slip band with a high density of planar defects. This understanding has shed new light on collective dislocation motion and microscopic deformation instability in advanced structural materials.

Deformation banding, where strain concentrates in local zones, is a common phenomenon in various substances and systems, including crystalline solids, metals, granular media, and even geologic faults under compressive stress. The discovery of extended slip bands challenges the classic model developed by physicists Charles Frank and Thornton Read in the 1950s.

“This foundational knowledge will accelerate the discovery of materials with tailored and predictable mechanical properties to meet the rising demand for advanced materials resilient to extreme environments across energy and aerospace sectors,” said corresponding author Penghui Cao, UC Irvine associate professor of mechanical and aerospace engineering.

The research was funded by the U.S. Department of Energy, UC Irvine, and the National Science Foundation (through the UC Irvine Center for Complex and Active Materials). The project involved graduate students, research specialists, and other professors from UCI’s Department of Mechanical and Aerospace Engineering and Department of Materials Science and Engineering.

Continue Reading

Biochemistry

Unveiling the Mystery of Crystals: Scientists Discover a New Type and Shed Light on Their Formation

Crystals — from sugar and table salt to snowflakes and diamonds — don’t always grow in a straightforward way. Researchers have now captured this journey from amorphous blob to orderly structures. In exploring how crystals form, the researchers also came across an unusual, rod-shaped crystal that hadn’t been identified before, naming it ‘Zangenite’ for the graduate student who discovered it.

Avatar photo

Published

on

By

Unveiling the Mystery of Crystals: Scientists Discover a New Type and Shed Light on Their Formation

Crystals have long been a subject of fascination, from the intricate beauty of snowflakes to the durability of diamonds. However, their growth process has remained somewhat mysterious, with scientists once thinking that they always formed in a straightforward way. A new study published in Nature Communications has shed light on this process and led to an unexpected discovery – a new type of crystal.

Researchers at New York University (NYU) have been exploring how crystals form through experiments and computer simulations. They used colloidal particles, tiny spheres much larger than atoms, to observe the crystallization process at a single-particle level. This allowed them to study the formation of crystals in a way that was previously difficult or impossible.

“The advantage of studying colloidal particles is that we can observe crystallization processes at a single-particle level,” said Stefano Sacanna, professor of chemistry at NYU. “With colloids, we can watch crystals form with our microscope.”

The researchers conducted experiments to carefully observe how charged colloidal particles behave in different growth conditions as they transition from salt water suspensions to fully formed crystals. They also ran thousands of computer simulations led by Glen Hocky, assistant professor of chemistry at NYU, to model how crystals grow and help explain what they observed.

The team determined that colloidal crystals form through a two-step process: amorphous blobs of particles first condense before transforming into ordered crystal structures. This process resulted in a diverse array of crystal types and shapes.

During these experiments, PhD student Shihao Zang came across a rod-shaped crystal that he couldn’t identify. Despite comparing it to more than a thousand crystals found in the natural world, he still couldn’t find a match. However, through computer modeling, the researchers simulated a crystal that was exactly the same, enabling them to study its elongated, hollow shape in even greater detail.

The newly discovered crystal, named Zangenite after the PhD student who discovered it, has hollow channels running along its length. This unique structure creates an opportunity to explore uses for low-density crystals and may pave the way for finding additional new crystals.

“We study colloidal crystals to mimic the real world of atomic crystals, but we never imagined that we would discover a crystal that we cannot find in the real world,” said Zang.

The discovery of Zangenite has significant implications for the development of new materials, including photonic bandgap materials. These materials are foundational for lasers, fiber-optic cables, solar panels, and other technologies that transmit or harvest light.

The study’s authors include Sanjib Paul, Cheuk Leung, Michael Chen, and Theodore Hueckel. The research was supported by the US Army Research Office, the Simons Center for Computational Physical Chemistry at NYU, and the National Institutes of Health.

Continue Reading

Trending