Connect with us

Earth & Climate

Reviving Peatlands: A Groundbreaking Method Restores Oil Wells Back to Nature with Moss

In what could represent a milestone in ecological restoration, researchers have implemented a method capable of restoring peatlands at tens of thousands of oil and gas exploration sites in Western Canada. The project involves lowering the surface of these decommissioned sites, known as well pads, and transplanting native moss onto them to effectively recreate peatlands. This is the first time researchers have applied the method to scale on an entire well pad. The study found that the technique results in sufficient water for the growth of peatland moss across large portions of the study site.

Avatar photo

Published

on

The Canadian landscape is home to vast expanses of peatlands, which play a crucial role in storing carbon, regulating water cycles, and providing habitats for diverse wildlife. However, the extraction of oil and gas has long been a significant threat to these ecosystems, with well pads often burying native vegetation under clay or sand. Researchers from the University of Waterloo have developed an innovative method that can restore these decommissioned sites back to their natural state, using moss as a key component in this ecological rebirth.

The study involved lowering the surface of the well pad and transplanting native moss onto it, effectively recreating peatlands. This groundbreaking approach has shown promising results, with sufficient water for the growth of peatland moss across large portions of the study site. Historically, restoration efforts focused on planting trees or grasses to establish upland forests or grasslands. The new method returns a well pad to its condition before drilling occurred and supports the ongoing development of peatland restoration techniques.

“This is the first time researchers have applied this method on an entire well pad,” said Murdoch McKinnon, a PhD candidate in the Faculty of Environment. “Well pads bury all of the native peatland vegetation under clay or sand, negatively impacting the ability of the peatland to sequester carbon and also reducing the availability of habitat for wildlife.”

The researchers plan to continue monitoring ecosystem development on the tested well pads to confirm that the transplanted mosses will be self-sustaining over the coming decades. Partners at the Northern Alberta Institute of Technology’s Centre for Boreal Research are now applying some of the study’s recommendations at sites across northern Alberta.

“Preserving peatlands is critical because of the role they play storing and supplying water in the landscape,” said Dr. Richard Petrone, a professor in the Department of Geography and Environmental Management at Waterloo. “They are also our best choice for nature-based climate change solutions because of the vast amounts of carbon that they store.”

In the future, researchers will focus on increasing the amount of water that flows from surrounding natural peatlands into well pads to further optimize soil moisture. This will be an essential step given the sensitivity of the native mosses to drying out and might therefore improve regrowth.

The study, Hydrologic assessment of mineral substrate suitability for true moss initiation in a boreal peatland undergoing restoration, appears in Ecological Engineering. The findings have significant implications for the oil and gas industry and its regulators, as they work towards mitigating the long-term impact of resource extraction on Canadian peatland ecosystems.

Agriculture and Food

The Edible Aquatic Robot: Harnessing Nature’s Power to Monitor Waterways

An edible robot leverages a combination of biodegradable fuel and surface tension to zip around the water’s surface, creating a safe — and nutritious — alternative to environmental monitoring devices made from artificial polymers and electronics.

Avatar photo

Published

on

The Edible Aquatic Robot is a groundbreaking innovation developed by EPFL scientists, who have successfully created a biodegradable and non-toxic device to monitor waterways. This remarkable invention leverages the Marangoni effect, which allows aquatic insects to propel themselves across the surface of water, to create a safe and efficient alternative to traditional environmental monitoring devices made from artificial polymers and electronics.

The robot’s clever design takes advantage of a chemical reaction within a tiny detachable chamber that produces carbon dioxide gas. This gas enters a fuel channel, forcing the fuel out and creating a sudden reduction in water surface tension that propels the robot forward. The device can move freely around the surface of the water for several minutes, making it an ideal solution for monitoring waterways.

What makes this invention even more remarkable is its edible nature. The robot’s outer structure is made from fish food with a 30% higher protein content and 8% lower fat content than commercial pellets. This not only provides strength and rigidity to the device but also acts as nourishment for aquatic wildlife at the end of its lifetime.

The EPFL team envisions deploying these robots in large numbers, each equipped with biodegradable sensors to collect environmental data such as water pH, temperature, pollutants, and microorganisms. The researchers have even fabricated ‘left turning’ and ‘right turning’ variants by altering the fuel channel’s asymmetric design, allowing them to disperse the robots across the water’s surface.

This work is part of a larger innovation in edible robotics, with the Laboratory of Intelligent Systems publishing several papers on edible devices, including edible soft actuators as food manipulators and pet food, fluidic circuits for edible computation, and edible conductive ink for monitoring crop growth. The potential applications of these devices are vast, from stimulating cognitive development in aquatic pets to delivering nutrients or medication to fish.

As EPFL PhD student Shuhang Zhang notes, “The replacement of electronic waste with biodegradable materials is the subject of intensive study, but edible materials with targeted nutritional profiles and function have barely been considered, and open up a world of opportunities for human and animal health.” This groundbreaking innovation in edible aquatic robots has the potential to revolutionize the way we monitor waterways and promote sustainable development.

Continue Reading

Earth & Climate

Unlocking Ocean Secrets: Scientists Unveil Interactive Map to Protect Migrating Marine Life

Scientists have launched an interactive global map to show the migratory patterns of more than 100 marine species in an effort to protect at-risk wildlife.

Avatar photo

Published

on

Scientists have developed an innovative tool to revolutionize ocean conservation efforts. The Migratory Connectivity in the Ocean (MiCO) database, created by researchers from The University of Queensland and Duke University, provides a comprehensive global map of marine migratory patterns. This groundbreaking interactive tool aims to bridge information gaps for policymakers and conservationists, ultimately protecting at-risk wildlife.

Dr. Lily Bentley, from UQ’s Centre for Biodiversity and Conservation Science, explained that the online tool offers a freely accessible global view of marine migratory connectivity. “MiCO brings together thousands of records from over 1,300 sources to map how marine animals traverse the world’s oceans,” she said. The database covers 109 species, including birds, mammals, turtles, and fish.

Researchers discovered that many marine animals migrate through national waters and the high seas during their life cycles, exposing them to various threats across countries. Dr. Bentley highlighted the importance of cross-boundary cooperation in protecting these migratory species. “MiCO enables scientists, governments, and international organisations to understand how migratory marine species link regions and jurisdictions,” she said.

The intricate connectivity described in the system underscores the need for globally-aligned conservation efforts. Associate Professor Daniel Dunn, Centre director, emphasized that no country can fully protect migratory species on its own. “To protect these species effectively, nations must work together,” he said.

MiCO’s freely available models have already been identified as a valuable asset to inform the implementation of the recent High Seas Treaty, which seeks to safeguard biodiversity beyond national waters. The system also aligns with the Convention on Migratory Species’ goal of developing a global atlas of animal migration, an effort to which MiCO seeks to be a key contributor.

Researchers say more than two-thirds of marine migratory species are still unassessed and future expansions of MiCO are planned. Their ultimate goal is to provide the most comprehensive global baseline of connectivity generated by marine migratory species possible, so that conservation strategies are based on robust data. This research has been published in Nature Communications.

Continue Reading

Civil Engineering

The Sinking Cities of America: A Study Reveals Widespread Land Movement Across 28 Major U.S. Metropolises

A new study of the 28 most populous U.S. cities finds that all are sinking to one degree or another. The cities include not just those on the coasts, where relative sea level is a concern, but many in the interior. Furthermore, using newly granular data, the study finds that some cities are sinking at different rates in different spots, or sinking in some places and rising in others, potentially introducing stresses that could affect buildings and other infrastructure.

Avatar photo

Published

on

By

The study, published in Nature Cities, reveals that all 28 most populous U.S. cities are experiencing some degree of land movement, with the majority sinking at varying rates due to a combination of factors including groundwater extraction, climate change, and human activities such as construction and urbanization.

Lead author Leonard Ohenhen, a postdoctoral researcher at Columbia Climate School’s Lamont-Doherty Earth Observatory, notes that as cities continue to grow, subsidence can become more pronounced, producing stresses on infrastructure that may exceed safety limits. “We will see more cities expand into subsiding regions,” he says.

The study uses satellite data to map land movements in the 28 cities, including Houston, which is experiencing some of the most rapid sinking, with over 40% of its area subsiding more than 5 millimeters per year. Other Texas cities, Fort Worth and Dallas, are also among the fastest-sinking, while areas around New York’s LaGuardia Airport and parts of Las Vegas, Washington, D.C., and San Francisco are experiencing localized fast-sinking zones.

Researchers found that groundwater removal for human use was responsible for 80% of overall sinkage, with compaction below ground level causing subsidence at the surface. Climate-induced droughts in some areas will likely worsen subsidence in the future, says Ohenhen.

The study also reveals that natural forces are at work in some areas, such as the weight of ancient ice sheets that once covered much of interior North America. Even today, some cities like New York, Indianapolis, Nashville, Philadelphia, Denver, Chicago, and Portland are still subsiding due to these bulges, with rates ranging from 1 to 3 millimeters per year.

The researchers emphasize that continued population growth and water usage will likely exacerbate subsidence in the future. They recommend that cities focus on solutions such as land raising, enhanced drainage systems, and green infrastructure to mitigate flooding, and retrofitting existing structures to address tilting hazards.

Ohenhen concludes, “We have to move to solutions.” The study was coauthored by researchers from various institutions and provides a valuable resource for policymakers and urban planners to address the challenges posed by subsidence in major American cities.

Continue Reading

Trending