Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computers & Math

A Breakthrough in AR Glasses: One Glass, Full Color

Augmented-reality (AR) technology is rapidly finding its way into everyday life, from education and healthcare to gaming and entertainment. However, the core AR device remains bulky and heavy, making prolonged wear uncomfortable. A breakthrough now promises to change that. A research team has slashed both thickness and weight using a single-layer waveguide.

Avatar photo

Published

on

A breakthrough in augmented-reality (AR) technology has been made by POSTECH researchers, which could revolutionize the way we interact with everyday life. The core AR device, typically bulky and heavy, can now be designed to be thin and light, making prolonged wear comfortable.

One of the main hurdles to commercializing AR glasses was the waveguide, a crucial component that guides virtual images directly to the user’s eye. Conventional designs required separate layers for red, green, and blue light, leading to increased weight and thickness. POSTECH researchers have eliminated this need by developing an achromatic metagrating that handles all colors in a single glass layer.

The key to this innovation lies in an array of nanoscale silicon-nitride pillars whose geometry was finely tuned using a stochastic topology-optimization algorithm to steer light with maximum efficiency. In experiments, the researchers produced vivid full-color images using a 500-µm-thick single-layer waveguide – about one-hundredth the diameter of a human hair.

The new design erases color blur while outperforming multilayer optics in brightness and color uniformity. This breakthrough has significant implications for the commercialization of AR glasses, which could become as thin and light as ordinary eyewear. The era of truly everyday AR is now within reach.

“This work marks a key milestone for next-generation AR displays,” said Prof. Junsuk Rho. “Coupled with scalable, large-area fabrication, it brings commercialization within reach.”

The study was carried out by POSTECH’s Departments of Mechanical, Chemical and Electrical Engineering and the Graduate School of Interdisciplinary Bioscience & Bioengineering, in collaboration with the Visual Team at Samsung Research. It was published online on April 30, 2025, in Nature Nanotechnology.

This research was supported by POSCO Holdings N.EX.T Impact, Samsung Research, the Ministry of Trade, Industry and Energy’s Alchemist Project, the Ministry of Science and ICT’s Global Convergence Research Support Program, and the Mid-Career Researcher Program.

Artificial Intelligence

“Revolutionizing Computing with the ‘Microwave Brain’ Chip”

Cornell engineers have built the first fully integrated “microwave brain” — a silicon microchip that can process ultrafast data and wireless signals at the same time, while using less than 200 milliwatts of power. Instead of digital steps, it uses analog microwave physics for real-time computations like radar tracking, signal decoding, and anomaly detection. This unique neural network design bypasses traditional processing bottlenecks, achieving high accuracy without the extra circuitry or energy demands of digital systems.

Avatar photo

Published

on

By

Here’s the rewritten article:

The world of computing has taken a significant leap forward with the development of the “microwave brain” chip, a low-power microchip that can compute on both ultrafast data signals and wireless communication signals. This revolutionary innovation, created by researchers at Cornell University, marks the first time a processor has harnessed the physics of microwaves to perform real-time frequency domain computation.

Detailed in the journal Nature Electronics, this groundbreaking processor is the first true microwave neural network and is fully integrated on a silicon microchip. It can handle tasks like radio signal decoding, radar target tracking, and digital data processing while consuming less than 200 milliwatts of power – an impressive feat considering its speed and efficiency.

The secret behind this technology lies in its design as a neural network, modeled after the human brain’s interconnected modes produced in tunable waveguides. This allows it to recognize patterns and learn from data, unlike traditional digital computers that rely on step-by-step instructions timed by a clock. The microwave brain processor uses analog, nonlinear behavior in the microwave regime to handle data streams at speeds of tens of gigahertz – far faster than most digital chips.

“We’ve created something that looks more like a controlled mush of frequency behaviors that can ultimately give you high-performance computation,” says Alyssa Apsel, professor of engineering and co-senior author. Bal Govind, lead author and doctoral student, explains that the chip’s programmable distortion across a wide band of frequencies allows it to be repurposed for several computing tasks.

The microwave brain processor has achieved remarkable accuracy on multiple classification tasks involving wireless signal types, comparable to digital neural networks but with a fraction of the power and size. It can perform both low-level logic functions and complex tasks like identifying bit sequences or counting binary values in high-speed data.

With its extreme sensitivity to inputs, this chip is well-suited for hardware security applications like sensing anomalies in wireless communications across multiple bands of microwave frequencies. The researchers are optimistic about the scalability of this technology and are experimenting with ways to improve its accuracy and integrate it into existing microwave and digital processing platforms.

As the world becomes increasingly dependent on data-driven technologies, innovations like the microwave brain chip have the potential to revolutionize computing and redefine what is possible in the realm of artificial intelligence and machine learning.

Continue Reading

Artificial Intelligence

“Tiny ‘talking’ robots form shape-shifting swarms that heal themselves”

Scientists have designed swarms of microscopic robots that communicate and coordinate using sound waves, much like bees or birds. These self-organizing micromachines can adapt to their surroundings, reform if damaged, and potentially undertake complex tasks such as cleaning polluted areas, delivering targeted medical treatments, or exploring hazardous environments.

Avatar photo

Published

on

By

The article discusses how scientists have developed tiny robots that use sound waves to coordinate into large swarms, exhibiting intelligent-like behavior. This innovative technology has the potential to revolutionize various fields, including environmental remediation, healthcare, and search and rescue operations.

Led by Igor Aronson, a team of researchers created computer models to simulate the behavior of these micromachines. They found that acoustic communication allowed individual robotic agents to work together seamlessly, adapting their shape and behavior to their environment, much like a school of fish or a flock of birds.

The robots’ ability to self-organize and re-form themselves if deformed is a significant breakthrough in the field of active matter, which studies the collective behavior of self-propelled microscopic biological and synthetic agents. This new technology has the potential to tackle complex tasks such as pollution cleanup, medical treatment from inside the body, and even exploration of disaster zones.

The team’s discovery marks a significant leap toward creating smarter, more resilient, and ultimately more useful microrobots with minimal complexity. The insights from this research are crucial for designing the next generation of microrobots capable of performing complex tasks and responding to external cues in challenging environments.

While the robots in the paper were computational agents within a theoretical model, rather than physical devices that were manufactured, the simulations observed the emergence of collective intelligence that would likely appear in any experimental study with the same design. The team’s findings have opened up new possibilities for the use of sound waves as a means of controlling micro-sized robots, offering advantages over chemical signaling such as faster and farther propagation without loss of energy.

This research has far-reaching implications for various fields, including medicine, environmental science, and engineering. It highlights the potential for microrobots to be used in complex tasks such as exploration, cleanup, and medical treatment, and demonstrates their ability to self-heal and maintain collective intelligence even after breaking apart.

Continue Reading

Civil Engineering

AI Breakthrough in Fusion Reactor Design: Uncovering Hidden Safe Zones with HEAT-ML

Scientists have developed a lightning-fast AI tool called HEAT-ML that can spot hidden “safe zones” inside a fusion reactor where parts are protected from blistering plasma heat. Finding these areas, known as magnetic shadows, is key to keeping reactors running safely and moving fusion energy closer to reality.

Avatar photo

Published

on

By

The development of artificial intelligence (AI) in fusion research has taken a significant leap forward. A public-private partnership between Commonwealth Fusion Systems (CFS), the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), and Oak Ridge National Laboratory has led to the creation of HEAT-ML, an AI approach that rapidly finds and simulates “magnetic shadows” in fusion vessels: safe havens protected from intense heat plasma.

HEAT-ML uses a deep neural network to learn how to calculate shadow masks, which are 3D maps of specific areas on internal components shielded from direct heat. This AI surrogate was trained using a database of approximately 1,000 SPARC simulations and can now simulate the same calculations in mere milliseconds, as opposed to the previous 30 minutes.

The goal is to create software that significantly speeds up fusion system design and enables good decision-making during operations by adjusting plasma settings to prevent potential problems. HEAT-ML was specifically designed for a small part of the SPARC tokamak under construction by CFS but has the potential to be expanded to generalize the calculation of shadow masks for exhaust systems of any shape and size, as well as other plasma-facing components.

Researchers believe that this AI breakthrough could pave the way for faster fusion system design, enabling good decision-making during operations, and potentially leading to limitless amounts of electricity on Earth.

Continue Reading

Trending