Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Artificial Intelligence

Estimating Biological Age with AI: A New Frontier in Cancer Care and Beyond

Researchers developed FaceAge, an AI tool that calculate’s a patient biological age from a photo of their face. In a new study, the researchers tied FaceAge results to health outcomes in people with cancer: When FaceAge estimated a younger age than a cancer patient’s chronological age, the patient did significantly better after cancer treatment, whereas patients with older FaceAge estimates had worse survival outcomes.

Avatar photo

Published

on

Estimating Biological Age with AI: A New Frontier in Cancer Care and Beyond

Imagine having a tool that can accurately predict a person’s biological age based on their facial appearance. This might seem like science fiction, but a team of investigators at Mass General Brigham has made this concept a reality using artificial intelligence (AI) technology called FaceAge.

FaceAge uses deep learning algorithms to analyze photographs of individuals and estimate their biological age. The tool was trained on 58,851 photos of presumed healthy individuals from public datasets and tested in a cohort of 6,196 cancer patients from two centers, who had photographs taken at the start of radiotherapy treatment.

The results were striking: patients with cancer appeared significantly older than those without cancer, with an average FaceAge that was about five years older than their chronological age. Moreover, older FaceAge predictions were associated with worse overall survival outcomes across multiple cancer types.

This technology has significant implications for cancer care. By using FaceAge to inform clinical decision-making, healthcare providers may be able to tailor treatment plans more effectively to individual patients based on their estimated biological age and health status.

The researchers also found that FaceAge outperformed clinicians in predicting short-term life expectancies of patients receiving palliative radiotherapy. This highlights the potential for AI-driven tools like FaceAge to provide valuable insights in high-pressure situations, where accurate predictions are crucial.

While further research is needed before this technology can be used in real-world clinical settings, the possibilities are vast and exciting. By expanding its capabilities to predict diseases, general health status, and lifespan, FaceAge has the potential to revolutionize our approach to healthcare.

The co-senior authors of the study, Hugo Aerts, PhD, and Ray Mak, MD, emphasize that this technology opens up new avenues for biomarker discovery from photographs, with implications far beyond cancer care or predicting age. As we increasingly consider chronic diseases as diseases of aging, accurately predicting an individual’s aging trajectory becomes crucial for developing effective treatment plans.

The door to a whole new realm of biomedical innovation has been opened, and it is essential that this technology be developed within a strong regulatory and ethical framework to ensure its safe use in various applications, ultimately helping to save lives.

Artificial Intelligence

AI Uncovers Hidden Heart Risks in CT Scans: A Game-Changer for Cardiovascular Care

What if your old chest scans—taken years ago for something unrelated—held a secret warning about your heart? A new AI tool called AI-CAC, developed by Mass General Brigham and the VA, can now comb through routine CT scans to detect hidden signs of heart disease before symptoms strike.

Avatar photo

Published

on

The Massachusetts General Brigham researchers have developed an innovative artificial intelligence (AI) tool called AI-CAC to analyze previously collected CT scans and identify individuals with high coronary artery calcium (CAC) levels, indicating a greater risk for cardiovascular events. Their research, published in NEJM AI, demonstrated the high accuracy and predictive value of AI-CAC for future heart attacks and 10-year mortality.

Millions of chest CT scans are taken each year, often in healthy people, to screen for lung cancer or other conditions. However, this study reveals that these scans can also provide valuable information about cardiovascular risk, which has been going unnoticed. The researchers found that AI-CAC had a high accuracy rate (89.4%) at determining whether a scan contained CAC or not.

The gold standard for quantifying CAC uses “gated” CT scans, synchronized to the heartbeat to reduce motion during the scan. However, most chest CT scans obtained for routine clinical purposes are “nongated.” The researchers developed AI-CAC, a deep learning algorithm, to probe through these nongated scans and quantify CAC.

The AI-CAC model was 87.3% accurate at determining whether the score was higher or lower than 100, indicating a moderate cardiovascular risk. Importantly, AI-CAC was also predictive of 10-year all-cause mortality, with those having a CAC score over 400 having a 3.49 times higher risk of death over a 10-year period.

The researchers hope to conduct future studies in the general population and test whether the tool can assess the impact of lipid-lowering medications on CAC scores. This could lead to the implementation of AI-CAC in clinical practice, enabling physicians to engage with patients earlier, before their heart disease advances to a cardiac event.

As Dr. Raffi Hagopian, first author and cardiologist at the VA Long Beach Healthcare System, emphasized, “Using AI for tasks like CAC detection can help shift medicine from a reactive approach to the proactive prevention of disease, reducing long-term morbidity, mortality, and healthcare costs.”

Continue Reading

Artificial Intelligence

Uncovering Human Superpowers: How Our Brains Master Affordances that Elude AI

Scientists at the University of Amsterdam discovered that our brains automatically understand how we can move through different environments—whether it’s swimming in a lake or walking a path—without conscious thought. These “action possibilities,” or affordances, light up specific brain regions independently of what’s visually present. In contrast, AI models like ChatGPT still struggle with these intuitive judgments, missing the physical context that humans naturally grasp.

Avatar photo

Published

on

By

Uncovering Human Superpowers: How Our Brains Master Affordances that Elude AI

Imagine walking through a park or swimming in a lake – it’s a natural ability we take for granted. Researchers at the University of Amsterdam have shed light on how our brains process this intuitive knowledge, and the implications are fascinating. By studying brain activity while people viewed various environments, they discovered unique patterns associated with “affordances” – opportunities for action.

In essence, when we look at a scene, our brains automatically consider what we can do in it, whether it’s walking, cycling, or swimming. This is not just a psychological concept but a measurable property of our brains. The research team, led by Iris Groen, used an MRI scanner to investigate brain activity while participants viewed images of indoor and outdoor environments.

The results were striking: certain areas in the visual cortex became active in a way that couldn’t be explained by visible objects in the image. These brain areas not only represented what could be seen but also what you can do with it – even when participants weren’t given an explicit action instruction. This means that affordance processing occurs automatically, without conscious thought.

The researchers compared these human abilities with AI models, including ChatGPT, and found that they were worse at predicting possible actions. Even the best AI models didn’t give exactly the same answers as humans, despite it being a simple task for us. This highlights how our way of seeing is deeply intertwined with how we interact with the world.

The study has significant implications for the development of reliable and efficient AI. As more sectors use AI, it’s crucial that machines not only recognize what something is but also understand what it can do. For example, a robot navigating a disaster area or a self-driving car distinguishing between a bike path and a driveway.

Moreover, the research touches on the sustainable aspect of AI. Current training methods are energy-intensive and often accessible to large tech companies. By understanding how our brains work and process information efficiently, we can make AI smarter, more economical, and more human-friendly.

The discovery of affordance processing in the brain opens up new avenues for improving AI and making it more sustainable. As we continue to explore the intricacies of human cognition, we may uncover even more human superpowers that elude AI – a fascinating prospect indeed.

Continue Reading

Artificial Intelligence

“Future-Proofing Workers: How Countries Are Preparing for an AI-Dominated Job Market”

AI is revolutionizing the job landscape, prompting nations worldwide to prepare their workforces for dramatic changes. A University of Georgia study evaluated 50 countries’ national AI strategies and found significant differences in how governments prioritize education and workforce training. While many jobs could disappear in the coming decades, new careers requiring advanced AI skills are emerging. Countries like Germany and Spain are leading with early education and cultural support for AI, but few emphasize developing essential human soft skills like creativity and communication—qualities AI can’t replace.

Avatar photo

Published

on

By

The article “Future-Proofing Workers: How Countries Are Preparing for an AI-Dominated Job Market” highlights the impact of artificial intelligence on the workforce and explores how different countries are preparing for this shift.

According to research from the University of Georgia, almost half of today’s jobs could vanish over the next 20 years due to the growth of AI. However, governments around the world are taking steps to help their citizens gain the skills they’ll need to thrive in an AI-dominated job market.

The study examined 50 countries’ national AI strategies, focusing on policies for education and the workforce. The researchers used six indicators to evaluate each country’s prioritization on AI workforce training and education, classifying them as giving high, medium or low priority.

Only 13 countries gave high prioritization to training the current workforce and improving AI education in schools. Eleven of those were European countries, with Mexico and Australia being the two exceptions. The United States was one of 23 countries that considered workforce training and AI education a medium priority, with a less detailed plan compared to countries that saw them as a high priority.

Some common themes emerged between countries, such as establishing or improving AI-focused programs in universities, on-the-job training, and improving AI education for K-12 students. However, few focused on vulnerable populations such as the elderly or unemployed through programs to teach them basic AI skills.

Researchers also noted that cultivating interest in AI could help students prepare for careers, with countries like Germany emphasizing creating a culture that encourages interest in AI and Spain starting to teach kids AI-related skills as early as preschool.

Developing human soft skills, such as creativity, collaboration, and communication, was highlighted as crucial to ensuring students and employees continue to have a place in the workforce. This study was published in Human Resource Development Review.

Continue Reading

Trending