Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Batteries

The Cellular Gatekeepers: How Membranes May Have Shaped Life on Earth

A team of researchers studied the properties of membranes to understand how these cellular structures influenced the chemistry of life on Earth as it began.

Avatar photo

Published

on

The origin of life on Earth remains one of science’s most enduring mysteries. Researchers have long sought to understand how the first cells emerged from the primordial soup, and what properties these early membranes may have had is a crucial piece of this puzzle. By studying the features shared among all life today, scientists can better grasp how life began and evolved into the incredible diversity we see in organisms today.

One essential feature of membranes is their selective permeability – determining which molecules pass through and which are kept out. This has a significant impact on the biological processes that keep cells functioning. Researchers have focused on three types of molecules crucial for all life: sugars, amino acids, and nucleic acids. These molecules are vital because they exhibit chirality – a property where molecules can twist in specific ways, much like our left and right hands.

In biology, chirality is critical for how molecules interact with each other. For example, the sugars in DNA and RNA must all have the same chirality (right-handed) to assemble into the backbone of a strand. However, the reason life chose one chirality over the other has remained a long-standing question.

A recent study proposes that early membranes may have played a key role in selecting the right-handed sugars and left-handed amino acids that are used by all life today. The researchers analyzed what molecules could pass through membranes with properties similar to those of archaea, a major group of microbes. They also designed a membrane that combined properties of both archaeal and bacterial membranes.

The results showed that right-handed DNA and RNA sugars more easily passed through these membranes, while left-handed versions had trouble permeating. There was more variability among amino acids, with some left-handed versions being able to pass through the mixed bacterial and archaeal membrane. This included alanine, one of the first amino acids thought to be used by life.

These findings demonstrate how differences in membranes can strongly affect which molecules are able to pass through. Since the membranes studied are only approximations of what the first life on Earth may have been encased in, there may be other unknown properties of the earliest membranes that influenced our most essential molecules.

The authors conclude, “All known life uses a specific stereochemistry: left-handed amino acids and right-handed DNA. Understanding how this evolved is a long-standing mystery key for understanding the origin of life. Our experiments show that a specific type of membrane – the structure that encloses cells – acts as a sieve that selects for the stereochemistry life uses.”

Batteries

Nanotech Breakthrough Boosts Solar Cell Efficiency Beyond 10%

Scientists in China have developed a precise method to grow titanium dioxide nanorod arrays with controllable spacing, independent of rod size. This innovation boosts solar cell efficiency by allowing light capture and charge movement to be fine-tuned.

Avatar photo

Published

on

By

The Hefei Institutes of Physical Science of the Chinese Academy of Sciences has made a groundbreaking discovery in the field of nanotechnology. A research team led by Prof. Mingtai Wang has developed a revolutionary method for creating titanium dioxide nanorod arrays (TiO2-NA) with precise control over rod spacing, without affecting individual rod size. This breakthrough has significant implications for high-performance solar cells and other applications.

The researchers used a carefully tuned process to grow TiO2 nanorods, which excel at harvesting light and conducting charge. Traditional methods, however, often result in linked parameters – adjusting one aspect affects others, potentially compromising device efficiency. The team’s innovative approach separates rod density from diameter and length, allowing for precise control over the former.

Their strategy involves extending the hydrolysis stage of a precursor film to create longer “gel chains,” which assemble into smaller anatase nanoparticles. These nanoparticles then convert in situ into rutile ones, serving as seeds for nanorod growth. By controlling this process, the team successfully produced TiO2-NA films with constant rod diameter and height, despite varying rod density.

When integrated into low-temperature-processed CuInS2 solar cells, these films achieved remarkable results – power conversion efficiencies exceeding 10%, peaking at 10.44%. To explain why spacing matters so profoundly, the researchers introduced a Volume-Surface-Density model, illustrating how rod density influences light trapping, charge separation, and carrier collection.

This research marks a significant step forward in regulating nanostructures and optimizing device performance. By establishing a complete system linking process regulation, microstructure evolution, and device optimization, this breakthrough has far-reaching implications for clean energy and optoelectronics applications.

Continue Reading

Automotive and Transportation

Breakthrough in Green Hydrogen Production: Triple-Layer Catalyst Supercharges Energy Yield by 800%

Researchers in Sweden have developed a powerful new material that dramatically boosts the ability to create hydrogen fuel from water using sunlight, making the process eight times more effective than before. This breakthrough could be key to fueling heavy transport like ships and planes with clean, renewable energy.

Avatar photo

Published

on

By

A team of scientists at Linköping University in Sweden has made a groundbreaking discovery in the production of green hydrogen, a promising renewable energy source. By developing a new triple-layer material, they have supercharged the energy yield by an impressive 800%.

Hydrogen produced from water is becoming increasingly important as the world shifts away from fossil fuels. The EU plans to ban new petrol and diesel car sales by 2035, making electric motors more common in vehicles. However, heavy trucks, ships, and aircraft require alternative energy sources, where hydrogen comes into play.

The researchers have previously shown that cubic silicon carbide (3C-SiC) has beneficial properties for facilitating the reaction where water is split into hydrogen and oxygen. Now, they’ve further developed a combined material consisting of three layers: a layer of 3C-SiC, a layer of cobalt oxide, and a catalyst material that helps to split water.

The new material, known as Ni(OH)2/Co3O4/3C-SiC, has demonstrated eight times better performance than pure cubic silicon carbide for splitting water into hydrogen. When sunlight hits the material, electric charges are generated, which are then used to split water. By combining the three layers, the researchers have improved the ability to separate positive and negative charges, making the splitting of water more effective.

The distinction between “grey” and “green” hydrogen is crucial in this context. Almost all hydrogen present on the market is “grey” hydrogen produced from fossil fuels, with significant environmental consequences. In contrast, “green” hydrogen is produced using renewable electricity as a source of energy.

Linköping University researchers aim to utilize only solar energy to drive the photochemical reaction to produce “green” hydrogen. Currently, materials under development have an efficiency of between 1 and 3 per cent, but for commercialization, the target is 10% efficiency. The research team estimates that it may take around five to ten years to develop materials that reach this coveted limit.

The study has been funded by several organizations, including the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Olle Engkvists Stiftelse, the ÅForsk Foundation, the Carl Tryggers Stiftelse, and through the Swedish Government Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.

This breakthrough has the potential to significantly impact the renewable energy landscape, making green hydrogen production more efficient and cost-effective. As researchers continue to push the boundaries of this technology, we can expect even more exciting developments in the future.

Continue Reading

Batteries

Unlocking the Potential of Solid-State Batteries

Researchers have discovered that the mixing of small particles between two solid electrolytes can generate an effect called a ‘space charge layer,’ an accumulation of electric charge at the interface between the two materials. The finding could aid the development of batteries with solid electrolytes, called solid-state batteries, for applications including mobile devices and electric vehicles.

Avatar photo

Published

on

By

The development of solid-state batteries has been gaining momentum in recent years, promising safer and more powerful alternatives to traditional lithium-ion batteries. A team of researchers from the University of Texas at Dallas has made a significant breakthrough in this field by discovering that mixing small particles between two solid electrolytes can generate an effect called a “space charge layer.” This accumulation of electric charge at the interface between the materials has been found to create pathways that make it easier for ions to move across, potentially leading to better-performing solid-state batteries.

The researchers, led by Dr. Laisuo Su and Dr. Kyeongjae Cho, published their study in ACS Energy Letters, where it was featured on the cover of the March issue. They discovered that when the separate solid electrolyte materials make physical contact, a layer forms at their boundary where charged particles, or ions, accumulate due to differences in each material’s chemical potential.

“Imagine mixing two ingredients in a recipe and unexpectedly getting a result that is better than either ingredient alone,” Dr. Su explained. “This effect boosted the movement of ions beyond what either material could achieve by itself.”

The research is part of the university’s Batteries and Energy to Advance Commercialization and National Security (BEACONS) initiative, which aims to develop and commercialize new battery technology and manufacturing processes. The team’s findings suggest a new way to design better solid electrolytes by carefully choosing materials that interact in a way that enhances ionic movement.

Solid-state batteries show promise for generating and storing more than twice as much power as batteries with liquid electrolytes, while being safer because they are not flammable. However, the development of solid-state batteries faces challenges due to difficulties in moving ions through solid materials.

The researchers plan to continue studying how the composition and structure of the interface lead to greater ionic conductivity. This breakthrough has the potential to unlock the full potential of solid-state batteries, enabling advanced battery systems that can improve the performance of drones for defense applications.

In conclusion, the discovery of the space charge layer phenomenon offers a promising new direction for the development of solid-state batteries. By understanding and harnessing this effect, researchers may be able to create more efficient and powerful batteries that meet the growing demands of mobile devices, electric vehicles, and other applications.

Continue Reading

Trending