Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Artificial Intelligence

“Revolutionizing Night Vision: Infrared Contact Lenses Unlock Human Potential”

Neuroscientists and materials scientists have created contact lenses that enable infrared vision in both humans and mice by converting infrared light into visible light. Unlike infrared night vision goggles, the contact lenses do not require a power source — and they enable the wearer to perceive multiple infrared wavelengths. Because they’re transparent, users can see both infrared and visible light simultaneously, though infrared vision was enhanced when participants had their eyes closed.

Avatar photo

Published

on

The article you provided has been rewritten to improve clarity, structure, and style, making it more accessible to a general audience.

Revolutionizing Night Vision: Infrared Contact Lenses Unlock Human Potential

Imagine being able to see in complete darkness, not just with your eyes open but even when they’re closed. Sounds like science fiction? Think again. Neuroscientists and materials scientists have made this possibility a reality by creating contact lenses that enable infrared vision in both humans and mice.

The technology uses nanoparticles that absorb infrared light and convert it into wavelengths visible to mammalian eyes. This allows wearers to perceive multiple infrared wavelengths simultaneously, with infrared vision enhanced when participants had their eyes closed. Unlike traditional night vision goggles, these contact lenses don’t require a power source, making them non-invasive and wearable.

“Our research opens up the potential for non-invasive wearable devices to give people super-vision,” says senior author Tian Xue, a neuroscientist at the University of Science and Technology of China. “There are many potential applications right away for this material.”

For instance, flickering infrared light could be used to transmit information in security settings, rescue operations, encryption, or anti-counterfeiting scenarios.

The team combined nanoparticles with flexible, non-toxic polymers used in standard soft contact lenses. After ensuring the contact lenses were non-toxic, they tested their function in both humans and mice.

In human trials, participants wearing the infrared contact lenses accurately detected flashing morse code-like signals and perceived the direction of incoming infrared light. “It’s totally clear cut: without the contact lenses, the subject cannot see anything, but when they put them on, they can clearly see the flickering of the infrared light,” said Xue.

Additional tweaks to the contact lenses allow users to differentiate between different spectra of infrared light by engineering the nanoparticles to color-code different wavelengths. This technology could make the invisible visible for people with color vision deficiency (color blindness) and help them detect wavelengths that would otherwise be undetectable.

The researchers have also developed a wearable glass system using the same nanoparticle technology, enabling participants to perceive higher-resolution infrared information. Currently, the contact lenses can only detect infrared radiation projected from an LED light source, but the team is working to increase the nanoparticles’ sensitivity so they can detect lower levels of infrared light.

“In the future, by working together with materials scientists and optical experts, we hope to make a contact lens with more precise spatial resolution and higher sensitivity,” says Xue. This breakthrough has far-reaching implications for various fields, from healthcare to national security and beyond.

Artificial Intelligence

Self-Powered Artificial Synapse Revolutionizes Machine Vision

Despite advances in machine vision, processing visual data requires substantial computing resources and energy, limiting deployment in edge devices. Now, researchers from Japan have developed a self-powered artificial synapse that distinguishes colors with high resolution across the visible spectrum, approaching human eye capabilities. The device, which integrates dye-sensitized solar cells, generates its electricity and can perform complex logic operations without additional circuitry, paving the way for capable computer vision systems integrated in everyday devices.

Avatar photo

Published

on

By

The human visual system has long been a source of inspiration for computer vision researchers, who aim to develop machines that can see and understand the world around them with the same level of efficiency and accuracy as humans. While machine vision systems have made significant progress in recent years, they still face major challenges when it comes to processing vast amounts of visual data while consuming minimal power.

One approach to overcoming these hurdles is through neuromorphic computing, which mimics the structure and function of biological neural systems. However, two major challenges persist: achieving color recognition comparable to human vision, and eliminating the need for external power sources to minimize energy consumption.

A recent breakthrough by a research team led by Associate Professor Takashi Ikuno from Tokyo University of Science has addressed these issues with a groundbreaking solution. Their self-powered artificial synapse is capable of distinguishing colors with remarkable precision, making it particularly suitable for edge computing applications where energy efficiency is crucial.

The device integrates two different dye-sensitized solar cells that respond differently to various wavelengths of light, generating its electricity via solar energy conversion. This self-powering capability makes it an attractive solution for industries such as autonomous vehicles, healthcare, and consumer electronics, where visual recognition capabilities are essential but power consumption is limited.

The researchers demonstrated the potential of their device in a physical reservoir computing framework, recognizing different human movements recorded in red, green, and blue with an impressive 82% accuracy. This achievement has significant implications for various industries, including autonomous vehicles, which could utilize these devices to efficiently recognize traffic lights, road signs, and obstacles.

In healthcare, self-powered artificial synapses could power wearable devices that monitor vital signs like blood oxygen levels with minimal battery drain. For consumer electronics, this technology could lead to smartphones and augmented/virtual reality headsets with dramatically improved battery life while maintaining sophisticated visual recognition capabilities.

The realization of low-power machine vision systems with color discrimination capabilities close to those of the human eye is within reach, thanks to this breakthrough research. The potential applications of self-powered artificial synapses are vast, and their impact will be felt across various industries in the years to come.

Continue Reading

Artificial Intelligence

Harnessing the Power of AI: Why Leashes are Better than Guardrails for Regulation

Many policy discussions on AI safety regulation have focused on the need to establish regulatory ‘guardrails’ to protect the public from the risks of AI technology. Experts now argue that, instead of imposing guardrails, policymakers should demand ‘leashes.’

Avatar photo

Published

on

By

Harnessing the Power of AI: Why Leashes are Better than Guardrails for Regulation

For years, policymakers have debated the best way to regulate Artificial Intelligence (AI) to prevent its potential risks. A new paper by experts Cary Coglianese and Colton R. Crum proposes a game-changing approach: rather than imposing strict “guardrails” to control AI development, they suggest using flexible “leashes.” This management-based regulation would allow firms to innovate while ensuring public safety.

The authors argue that guardrails are not effective for AI due to its rapidly evolving nature and diverse applications. Social media, chatbots, autonomous vehicles, precision medicine, and fintech investment advisors are just a few examples of how AI is transforming industries. While offering numerous benefits, such as improved cancer detection, AI also poses risks like AV collisions, social media-induced suicides, and bias in digital formats.

Coglianese and Crum provide three case studies illustrating the potential harm from unregulated AI:

1. Autonomous vehicle (AV) crashes
2. Social media-related suicides
3. Bias and discrimination through AI-generated content

In each scenario, firms using AI tools would be expected to put their technology on a leash by implementing internal systems to mitigate potential harms. This flexible approach allows for technological innovation while ensuring that companies are accountable for the consequences of their actions.

Management-based regulation offers several advantages over guardrails:

* It can flexibly respond to AI’s novel uses and problems
* It enables technological exploration, discovery, and change
* It provides a tethered structure that helps prevent AI from “running away”

By embracing this leash-like approach, policymakers can harness the power of AI while minimizing its risks.

Continue Reading

Artificial Intelligence

A Breakthrough in Soft Robotics: Engineers Develop Self-Healing Muscle for Robots

Students recently unveiled their invention of a robotic actuator — the ‘muscle’ that converts energy into a robot’s physical movement — that has the ability to detect punctures or pressure, heal the injury and repair its damage-detecting ‘skin.’

Avatar photo

Published

on

By

The University of Nebraska-Lincoln engineering team has made significant strides in developing soft robotics and wearable systems inspired by human and plant skin’s ability to self-heal injuries. Led by engineer Eric Markvicka, the team presented a groundbreaking paper at the IEEE International Conference on Robotics and Automation that showcased their innovative approach to creating an intelligent, self-healing artificial muscle.

The team’s strategy overcomes the long-standing problem of replicating traditional rigid systems using soft materials and incorporating nature-inspired design principles. Their multi-layer architecture enables the system to identify damage, pinpoint its location, and autonomously initiate a self-repair mechanism – all without external intervention.

The “muscle” or actuator features three layers: a damage detection layer composed of liquid metal microdroplets embedded in silicone elastomer, a self-healing component that uses thermoplastic elastomer to seal the wound, and an actuation layer that kick-starts the muscle’s motion when pressurized with water.

To begin the process, the team induces monitoring currents across the damage detection layer, which triggers formation of an electrical network between traces. Puncture or pressure damage causes this network to form, allowing the system to recognize and respond to the damage.

The next step is using electromigration – a phenomenon traditionally viewed as a hindrance in metallic circuits – to erase the newly formed electrical footprint. By further ramping up the current, the team can induce electromigration and thermal failure mechanisms that reset the damage detection network, effectively completing one cycle of damage and repair.

This breakthrough has far-reaching implications for various industries, particularly in agricultural states where robotics systems frequently encounter sharp objects. It could also revolutionize wearable health monitoring devices that must withstand daily wear and tear.

The technology has the potential to transform society more broadly by reducing electronic waste and mitigating environmental harm caused by consumer-based electronics’ short lifespans. Most consumer electronics have a lifespan of only one or two years, contributing billions of pounds of toxic waste each year.

“If we can begin to create materials that are able to passably and autonomously detect when damage has happened, and then initiate these self-repair mechanisms, it would really be transformative,” Markvicka said.

Continue Reading

Trending