Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Chemistry

‘Hopelessly Attached’: Scientists Discover New 2D Material That Sticks the Landing

Researchers have discovered a new 2D material, confirming decade-old prediction.

Avatar photo

Published

on

The discovery of a new 2D material has sent shockwaves through the scientific community. For over a decade, researchers at Rice University had predicted that boron atoms would cling too tightly to copper to form borophene, a flexible, metallic two-dimensional material with potential applications in electronics, energy, and catalysis. However, a recent study published in Science Advances reveals that this prediction has come true, but not in the way anyone expected.

Unlike previous attempts to synthesize borophene on metals like silver and gold, researchers have now successfully created a defined 2D copper boride material with a distinct atomic structure. This breakthrough sets the stage for further exploration of a relatively untapped class of 2D materials.

“Borophene is still a material at the brink of existence,” said Boris Yakobson, Rice’s Karl F. Hasselmann Professor of Engineering and professor of materials science and nanoengineering and chemistry. “Our very first theoretical analysis warned that on copper, boron would bond too strongly. Now, more than a decade later, it turns out we were right – and the result is not borophene, but something else entirely.”

The researchers’ efforts combined high-resolution imaging, spectroscopy, and theoretical modeling to resolve a debate about the nature of the material that forms at the interface between the copper substrate and the near-vacuum environment of the growth chamber.

A strong match between experimental data and theoretical simulations helped reveal a periodic zigzag superstructure and distinct electronic signatures. These findings have expanded our knowledge on the formation of atomically thin metal boride materials, which could inform future studies of related compounds with known technological relevance.

“2D copper boride is likely to be just one of many 2D metal borides that can be experimentally realized,” said Mark Hersam, Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, who co-authored the study. “We look forward to exploring this new family of 2D materials with broad potential use in applications ranging from electrochemical energy storage to quantum information technology.”

This discovery comes shortly after another boron-related breakthrough by the same Rice theory team. The juxtaposition of these findings highlights both the promise and the challenge of working with boron at the atomic scale, whose versatility allows for surprising structures but also makes it difficult to control.

The research was supported by the Office of Naval Research (N00014-21-1-2679), the National Science Foundation (DMR-2308691) and the United States Department of Energy (2801SC0012547). The content herein is solely the responsibility of the authors and does not necessarily represent the official views of the funding organizations and institutions.

Ancient Civilizations

Reviving an Ancient Hue: Researchers Recreate Egyptian Blue Pigment

Researchers have recreated the world’s oldest synthetic pigment, called Egyptian blue, which was used in ancient Egypt about 5,000 years ago.

Avatar photo

Published

on

By

The world’s oldest synthetic pigment, Egyptian blue, has been recreated by a team of researchers from Washington State University. This breakthrough, published in the journal NPJ Heritage Science, provides valuable insights for archaeologists and conservation scientists studying ancient Egyptian materials.

Led by John McCloy, director of WSU’s School of Mechanical and Materials Engineering, the research team collaborated with the Carnegie Museum of Natural History and the Smithsonian’s Museum Conservation Institute to develop 12 recipes for the pigment. These recipes utilized a variety of raw materials and heating times, replicating temperatures available to ancient artists.

Egyptian blue was highly valued in ancient times due to its unique properties and versatility. It was used as a substitute for expensive minerals like turquoise or lapis lazuli and applied to wood, stone, and cartonnage – a papier-mâché-type material. Depending on its ingredients and processing time, the pigment’s color ranged from deep blue to dull gray or green.

The researchers’ work aimed to highlight how modern science can reveal hidden stories in ancient Egyptian objects. After the Egyptians, the pigment was used by Romans, but by the Renaissance period, the knowledge of how it was made had largely been forgotten.

In recent years, there has been a resurgence of interest in Egyptian blue due to its intriguing properties and potential new technological applications. The pigment emits light in the near-infrared part of the electromagnetic spectrum, which people can’t see, making it suitable for fingerprinting and counterfeit-proof inks. It also shares similar chemistry with high-temperature superconductors.

To understand the makeup of Egyptian blue, the researchers created 12 different recipes using mixtures of silicon dioxide, copper, calcium, and sodium carbonate. They heated the material at around 1000 degrees Celsius for between one and 11 hours to replicate temperatures available to ancient artists. After cooling the samples at various rates, they studied the pigments using modern microscopy and analysis techniques that had never been used for this type of research.

The researchers found that Egyptian blue is highly heterogeneous, with different people making the pigment and transporting it to final uses elsewhere. Small differences in the process resulted in very different outcomes. In fact, to get the bluest color required only about 50% of the blue-colored components, regardless of the rest of the mixture’s composition.

The samples created are currently on display at Carnegie Museum of Natural History in Pittsburgh, Pennsylvania and will become part of the museum’s new long-term gallery focused on ancient Egypt. This research serves as a prime example of how science can shed light on our human past, revealing hidden stories in ancient objects and materials.

Continue Reading

Chemistry

Ultra-Compact Lenses That Unlock New Possibilities for Light

Physicists have developed a lens with ‘magic’ properties. Ultra-thin, it can transform infrared light into visible light by halving the wavelength of incident light.

Avatar photo

Published

on

By

Ultra-compact lenses have revolutionized the field of optics, enabling the creation of smaller, more efficient, and cost-effective optical devices. These innovative lenses, known as metalenses, are flat, ultra-thin, and lightweight, making them ideal for a wide range of applications, from camera technology to next-generation microscopy tools.

The key to this breakthrough lies in the use of special metasurfaces composed of nanostructures that modify the direction of light. By harnessing the power of nonlinear optics, researchers can now convert infrared light into visible radiation, opening up new possibilities for authentication, security features, and advanced imaging techniques.

Professor Rachel Grange at ETH Zurich has developed a novel process that enables the fabrication of lithium niobate metalenses using chemical synthesis and precision nanoengineering. This innovative technique allows for mass production, cost-effectiveness, and faster fabrication than other methods, making it an exciting development in the field of optics.

The potential applications of ultra-compact lenses are vast, from counterfeit-proof banknotes to advanced microscopy tools that can reveal new details about materials and structures. The use of simple camera detectors to convert infrared light into visible radiation could revolutionize sensing technologies, while reducing equipment needs for deep-UV light patterning in electronics fabrication.

As researchers continue to explore the possibilities offered by ultra-compact lenses, it’s clear that we’ve only scratched the surface of what this technology can achieve. With its potential to transform industries and improve our understanding of the world around us, ultra-compact lenses are an exciting development that promises to unlock new possibilities for light.

Continue Reading

Chemistry

A Groundbreaking Discovery: Designer Hybrid 2D Materials for Next-Generation Technologies

Materials scientists have succeeded in creating a genuine 2D hybrid material called glaphene.

Avatar photo

Published

on

By

The field of materials science has taken a significant leap forward with the creation of designer hybrid 2D materials. A team of researchers from Rice University has successfully synthesized glaphene, a genuine 2D hybrid material by chemically integrating graphene and silica glass into a single compound. This breakthrough discovery opens up new avenues for developing custom-built materials for next-generation electronics, photonics, and quantum devices.

The team employed a two-step, single-reaction method to grow glaphene using a liquid chemical precursor containing both silicon and carbon. By adjusting oxygen levels during heating, they first grew graphene and then shifted conditions to favor the formation of a silica layer. This novel approach allowed them to create a true hybrid material with new electronic and structural properties.

One of the key findings was that the layers in glaphene do not simply rest on each other; instead, electrons move and form new interactions and vibration states, giving rise to properties neither material has on its own. This unique bonding between the graphene and silica layers changes the material’s structure and behavior, turning a metal and an insulator into a new type of semiconductor.

The researchers used various techniques, including Raman spectroscopy and quantum simulations, to verify the experimental results and gain insights into the atomic-level interactions within glaphene. The findings suggest that this hybrid bonding allows electrons to flow between the layers, creating entirely new behaviors.

This research has significant implications for the development of next-generation materials with tailored properties. By combining fundamentally different 2D materials, researchers can create custom-built materials from scratch, enabling breakthroughs in various fields such as electronics, photonics, and quantum computing.

The team’s work reflects a guiding principle that encourages exploring ideas that others may hesitate to mix. This research demonstrates the power of collaboration and interdisciplinary approaches in driving innovation forward. The findings have been supported by various funding organizations and institutions, highlighting the importance of public-private partnerships in advancing scientific knowledge.

In conclusion, the discovery of glaphene represents a major breakthrough in materials science, offering new possibilities for creating designer hybrid 2D materials with tailored properties. This research has significant implications for various fields, from electronics to quantum computing, and underscores the importance of collaboration and interdisciplinary approaches in driving innovation forward.

Continue Reading

Trending