Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Climate

A More Gentle Future for the Atlantic Ocean Current: New Study Reveals Limited Weakening with Climate Change

Researchers created a detailed physical model that suggests a major Atlantic Ocean current will weaken far less under climate change than indicated by more extreme climate model projections.

Avatar photo

Published

on

The Atlantic meridional overturning circulation (AMOC) plays a crucial role in regulating Earth’s climate by transporting heat from the Southern to the Northern Hemisphere. Climate models have long predicted that global warming will cause the AMOC to weaken, with some projecting substantial weakening amounting to a near-collapse relative to its strength today.

However, a new study from Caltech finds that although the AMOC will weaken under global warming, it is likely to do so to a much lesser extent than current projections suggest. The team developed a simplified physical model based on fundamental principles of ocean circulation that also incorporates real-world measurements of the ocean current’s strength, collected over 20 years through the use of monitoring arrays and other observationally constrained products of the Atlantic basin.

The researchers found that the AMOC will weaken by around 18 to 43 percent at the end of the 21st century. While this does represent some weakening, it does not represent substantial weakening that the more extreme climate model projections suggest. This new understanding significantly narrows the range of future AMOC weakening, addressing a long-standing uncertainty in climate science.

The study suggests that much of the previous uncertainty and some of the more extreme AMOC weakening projections stemmed from biases in how climate models simulate the ocean’s current state, particularly its density stratification. The research sheds light on a long-standing and previously unexplained feature of climate models: the link between the present-day and future strength of the AMOC.

Climate models that simulate a stronger present-day AMOC tend to project greater weakening under climate change. The researchers found that this relationship stems from the depth of the AMOC. A stronger AMOC typically extends to greater depths and allows changes in surface water temperature and salinity properties – caused by global warming and freshwater input – to penetrate deeper into the ocean and drive greater weakening.

In other words, a climate model with a stronger and deeper AMOC is less resilient to surface changes and experiences proportionally more AMOC weakening than one with a shallower current. Climate models with a shallower present-day AMOC still show weakening under climate change, but to a lesser extent than those with a deeper present-day AMOC.

The study provides a framework to interrogate and evaluate more sophisticated models that include higher-resolution processes. The research suggests that much of the previous uncertainty and some of the more extreme AMOC weakening projections stemmed from biases in how climate models simulate the ocean’s current state, particularly its density stratification.

“Observational constraints imply limited future Atlantic meridional overturning circulation weakening.” This study is a crucial step forward in our understanding of the complex relationships between climate change, ocean currents, and regional climate patterns. The findings have significant implications for policymakers, scientists, and the general public, highlighting the importance of continued research into the complexities of our planet’s climate system.

The NSF-GFRP gave me the freedom to tinker and explore,” says Bonan. “There is immense value in doing basic research – it can give us a better indication of what the future might look like, as our study shows.”

The paper is titled “Observational constraints imply limited future Atlantic meridional overturning circulation weakening.” In addition to Bonan, Schneider, and Thompson, co-authors are Laure Zanna of New York University, Kyle Armour of the University of Washington, and Shantong Sun of Laoshan Laboratory in Qingdao, China. Funding was provided by the NSF, the David and Lucile Packard Foundation, and Schmidt Sciences LLC.

Ancient DNA

The Tipping Point: Scientists Warn of West Antarctic Ice Sheet Collapse and its Devastating Consequences

Collapse of the West Antarctic Ice Sheet could be triggered with very little ocean warming above present-day, leading to a devastating four meters of global sea level rise to play out over hundreds of years according to a new study. However, the authors emphasize that immediate actions to reduce emissions could still avoid a catastrophic outcome.

Avatar photo

Published

on

The fate of the West Antarctic Ice Sheet (WAIS) hangs precariously in the balance, with scientists warning that the next few years will be crucial in determining its future. A recent study published in Communications Earth & Environment has shed light on the alarming consequences of WAIS collapse, which could trigger a devastating four meters of global sea level rise over hundreds of years.

The researchers from the Potsdam Institute for Climate Impact Research (PIK), NORCE, and Northumbria University in the UK conducted extensive model simulations spanning 800,000 years to understand how the vast Antarctic Ice Sheet has responded to Earth’s climate fluctuations. Their findings revealed two stable states: one with WAIS intact, which is our current state, and another where the ice sheet has collapsed.

The primary driver of this collapse is rising ocean temperatures around Antarctica, which are mostly supplied by the ocean rather than the atmosphere. Once WAIS tips into the collapsed state, it would take several thousands of years for temperatures to drop back to pre-industrial conditions, reversing the damage.

“We have two stable states: one with WAIS intact and another where it has collapsed,” said lead author David Chandler from NORCE. “Once tipping has been triggered, it’s self-sustaining and seems very unlikely to be stopped before contributing to about four meters of sea-level rise. And this would be practically irreversible.”

The consequences of WAIS collapse would be catastrophic, with four meters of sea level rise projected to displace millions of people worldwide and wreak havoc on coastal communities.

However, there is still hope for a better outcome. Immediate actions to reduce emissions could avoid a catastrophic outcome, giving us a narrow window to act before it’s too late.

“It takes tens of thousands of years for an ice sheet to grow, but just decades to destabilise it by burning fossil fuels,” said co-author Julius Garbe from PIK. “Now we only have a narrow window to act.”

Continue Reading

Air Pollution

The Persistent Pollutant: Uncovering the Mystery of Atmospheric Nitrates

A new study details processes that keep pollutants aloft despite a drop in emissions.

Avatar photo

Published

on

By

The persistent presence of nitrates in the atmosphere has long been a concern for environmental scientists. Despite efforts to reduce emissions over the past few decades, nitrate levels remain stubbornly high. A recent study published in Nature Communications sheds light on this enigma, revealing that chemical processes within the atmosphere are responsible for the persistence of these pollutants.

The research team led by Hokkaido University’s Professor Yoshinori Iizuka examined nitrate deposition history from 1800 to 2020 in an ice core taken from southeastern Greenland. The results showed a gradual increase in nitrates up to the 1970s, followed by a slower decline after the 1990s. This trend mirrors the changes in emissions of nitrate precursors over the same period.

The study’s findings suggest that factors other than emission reductions are driving the persistence of atmospheric nitrates. The researchers used a global chemical transport model to investigate these factors and discovered that atmospheric acidity is the key culprit. As acidity levels rise, more nitrates become trapped in particulate form, enabling them to persist longer and travel farther.

The implications of this study are significant. Accurate measurements of particulate nitrates in ice cores provide valuable data for refining climate modeling predictions. Moreover, the findings suggest that atmospheric nitrates will soon replace sulfates as the primary aerosol in the Arctic, further amplifying warming in the region.

As Professor Iizuka notes, “Ours is the first study to present accurate information for records of particulate nitrates in ice cores.” The persistence of these pollutants highlights the importance of continued research into atmospheric chemistry and climate modeling. By understanding the complex interactions within our atmosphere, we can better predict and prepare for the challenges that lie ahead.

Continue Reading

Climate

Monitoring Global Warming: A More Accurate Track to Paris Climate Goals

Global warming is continuously advancing. How quickly this will happen can now be predicted more accurately than ever before, thanks to a method developed by climate researchers. Anthropogenic global warming is set to exceed 1.5 degrees Celsius by 2028 and hence improved quantification of the Paris goals is proposed.

Avatar photo

Published

on

Monitoring Global Warming: A More Accurate Track to Paris Climate Goals

Climate researcher Gottfried Kirchengast and his team at the University of Graz have developed a new method that enables reliable monitoring of global warming. This breakthrough allows for more accurate predictions about the pace of global warming, which is essential for tracking progress towards the Paris climate goals.

The Paris Agreement of 2015 aimed to limit global warming to well below 2°C and preferably to 1.5°C compared to pre-industrial levels. The latest IPCC report expected the 1.5°C threshold to be reached between 2030 and 2035. However, Kirchengast’s research suggests that this estimate may be too optimistic, with temperatures likely exceeding the 1.5°C mark as early as 2028.

The researchers have created a benchmark record for global surface air temperature from 1850 to 2024, which provides an unprecedented level of accuracy. This new data show a six percent higher increase in global surface air temperature compared to conventional monitoring methods. The team’s findings also enable the distinction between human-induced temperature increases and natural climate phenomena like El Niño.

Kirchengast proposes a four-classes assessment scale to evaluate compliance with the Paris climate goals. This scale would provide clarity on whether countries are meeting or missing their targets, allowing policymakers to make informed decisions.

The researcher emphasizes the importance of standardizing this assessment method through organizations like the World Meteorological Organization and the IPCC. He also suggests defining the phrase ‘well below 2°C’ as ‘below 1.7°C,’ providing a clear and measurable target for countries to work towards.

By using Kirchengast’s research, we can create a more accurate track for monitoring global warming and hold ourselves accountable for achieving the Paris climate goals. This will help us make informed decisions about our actions to mitigate climate change and achieve the desired outcomes for our planet.

Continue Reading

Trending