Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Air Pollution

Toxic Emissions from Salton Sea Expose Communities to Hidden Health Risks

Researchers showed that hydrogen sulfide, which is associated with numerous health conditions, is emitted from California’s largest lake at levels far higher and more frequently than previously reported.

Avatar photo

Published

on

California’s Salton Sea has been emitting high levels of hydrogen sulfide, a toxic gas that can cause headaches, nausea, fatigue, and long-term neurological and respiratory effects. A recent study found that this pollution is vastly underestimated by government air-quality monitoring systems, putting communities around the lake at risk.

The Salton Sea, located about 160 miles east of Los Angeles, has been maintained mostly by runoff from the surrounding basin since 1907. However, due to a hotter and drier climate, and policies that diverted more water away from the valley, the lake’s levels began dropping rapidly in the second half of the 20th century.

This desiccating organic matter emits hydrogen sulfide, which has been shown to cause health problems at even low levels of exposure. The researchers found that between 2013 and 2024, air quality sensors in communities surrounding the Salton Sea frequently showed hydrogen sulfide readings exceeding State of California standards.

The exceedances were most likely in the summer and most pronounced at the Torres Martinez site, which is the closest to the lake. In the month of August for each year from 2013 to 2024, Torres Martinez had an average of more than 250 hours of readings in excess of state standards.

A comparison of wind direction data confirmed that exceedances tended to happen when the wind was blowing into communities from the direction of the lake. An additional sensor placed in the shallow waters of the lake picked up consistently high hydrogen sulfide levels regardless of wind direction, helping to confirm that the lake is indeed the source of hydrogen-sulfide emissions.

The findings highlight the need for increased air-quality monitoring around the Salton Sea, as well as further study of the public health consequences of these emissions. The researchers say that community residents exposed to hydrogen sulfide are impacted not only in their physical health but also in their quality of life.

“This is a textbook case of environmental injustice,” said Aydee Palomino, project manager for the Campaign for Thriving Salton Sea Communities at Alianza Coachella Valley and a study co-author. “People in the Coachella and Imperial valleys are breathing in pollutants that are under the radar of traditional monitoring systems.”

The research was supported by Burroughs Wellcome Fund, the Google Environmental Justice Data Fund, and NASA. However, the unexpected termination of the NASA grant has disrupted planned follow-up work, including efforts to share and discuss the findings with members of the affected community.

Acid Rain

The Nanoplastics Paradox: Uncovering the Shocking Amounts of Tiny Plastic Particles in Our Oceans

Millions of tons of plastic in the ocean aren’t floating in plain sight—they’re invisible. Scientists have now confirmed that the most abundant form of plastic in the Atlantic is in the form of nanoplastics, smaller than a micrometer. These particles are everywhere: in rain, rivers, and even the air. They may already be infiltrating entire ecosystems, including the human brain, and researchers say prevention—not cleanup—is our only hope.

Avatar photo

Published

on

The world’s oceans have long been thought to be a vast, plastic-free expanse. However, recent research has revealed a shocking truth – our seas are home to an estimated 27 million tons of tiny plastic particles, known as nanoplastics. This staggering amount is the result of a collaborative effort between ocean scientists and atmospheric researchers from Utrecht University.

The discovery was made possible by the work of Sophie ten Hietbrink, a master’s student who spent four weeks aboard the research vessel RV Pelagia, collecting water samples at 12 locations across the North Atlantic. Using mass spectrometry in the laboratory, she was able to detect and quantify the characteristic molecules of different types of plastics present in the ocean.

According to Helge Niemann, a researcher at NIOZ and professor of geochemistry at Utrecht University, this estimate is the first of its kind. “Until now, there were only a few publications that showed nanoplastics existed in the ocean water,” he said. “But we have never been able to estimate the amount until now.”

The consequences of this revelation are profound. Nanoplastics can penetrate deep into our bodies and have even been found in brain tissue. Now that their ubiquity in oceans has been confirmed, it’s likely they will contaminate every level of the ecosystem – from bacteria and microorganisms to fish and top predators like humans.

While cleaning up the existing nanoplastics is impossible, researchers emphasize that preventing further pollution with plastics is essential. Niemann emphasizes this crucial message: “We should at least prevent the further pollution of our environment with plastics.”

Future research will focus on understanding the different types of plastics present in nanoplastics and their distribution across other oceans. As we continue to explore the complexities of plastic pollution, it’s clear that a concerted effort is needed to protect our planet from these insidious invaders – even if they’re as small as a nanometer.

Continue Reading

Air Pollution

Unveiling 12,000 Years of European History: The Mont Blanc Ice Core Record

An ancient glacier high in the French Alps has revealed the oldest known ice in Western Europe—dating back over 12,000 years to the last Ice Age. This frozen archive, meticulously analyzed by scientists, captures a complete chemical and atmospheric record spanning humanity’s transition from hunter-gatherers to modern industry. The core contains stories of erupting volcanoes, changing forests, Saharan dust storms, and even economic impacts across history. It offers a rare glimpse into both natural climate transitions and human influence on the atmosphere, holding vital clues for understanding past and future climate change.

Avatar photo

Published

on

Unveiling 12,000 Years of European History: The Mont Blanc Ice Core Record

A team of researchers from the Desert Research Institute’s (DRI) Ice Core Lab has made a groundbreaking discovery by analyzing a 40-meter long ice core from the French Alps. This study, published in the June issue of PNAS Nexus, reveals an intact record of atmospheric aerosols and climate dating back at least 12,000 years.

The ice core, collected from Mont Blanc’s Dôme du Goûter, provides a unique insight into Europe’s local climate during different time periods. By using radiocarbon dating techniques, the research team established that the glacier offers an accurate record of past atmospheric aerosols and climate transitions.

Aerosols play a significant role in regional climate through their interactions with clouds and solar radiation. The insights offered by this ice core record can help inform accurate climate modeling for both the past and future.

One of the most striking aspects of this study is that it reveals a temperature difference of about 3 degrees Celsius between the last Ice Age and the current Holocene Epoch. Using pollen records embedded in the ice, reconstructions of summer temperatures during the last Ice Age were about 2 degrees Celsius cooler throughout western Europe, and about 3.5 degrees Celsius cooler in the Alps.

The phosphorous record also tells researchers the story of vegetation changes in the region over the last 12,000 years. Phosphorous concentrations in the ice were low during the last Ice Age, increased dramatically during the early to mid-Holocene, and then decreased steadily into the late Holocene.

Records of sea salt also helped researchers examine changes in historical wind patterns. The ice core revealed higher rates of sea salt deposition during the last Ice Age that may have resulted from stronger westerly winds offshore of western Europe.

The most dramatic story told by this study is the change in dust aerosols during the climatic shift. Dust serves as an important driver of climate by both absorbing and scattering incoming solar radiation and outgoing planetary radiation, and impacts cloud formation and precipitation by acting as cloud condensation nuclei.

During the last Ice Age, dust was found to be about 8-fold higher compared to the Holocene. This contradicts the mere doubling of dust aerosols between warm and cold climate stages in Europe simulated by prior climate models.

This study is only the beginning of the Mont Blanc ice record’s story, as researchers plan to continue analyzing it for indicators of human history. The first step in uncovering every ice core’s record is to use isotopes and radiocarbon dating to establish how old each layer of ice is. Now, with that information, scientists can take an even deeper look at what it can tell us about past human civilizations and their impact on the environment.

The Mont Blanc ice record has the potential to reveal more stories entombed in its layers, and researchers are eager to continue exploring this ancient history for a better understanding of our planet’s climate variability and human history.

Continue Reading

Air Pollution

The Hidden Dangers of Air Pollution: How It Quietly Damages Your Heart

Breathing polluted air—even at levels considered “safe”—may quietly damage your heart. A new study using advanced MRI scans found that people exposed to more air pollution showed early signs of scarring in their heart muscle, which can lead to heart failure over time. This damage showed up in both healthy individuals and people with heart conditions, and was especially noticeable in women, smokers, and those with high blood pressure.

Avatar photo

Published

on

The Hidden Dangers of Air Pollution: How It Quietly Damages Your Heart

A recent study published in Radiology has made a groundbreaking discovery about the impact of air pollution on our cardiovascular system. Researchers using cardiac MRI have found that even low levels of fine particulate matter in the air can lead to early signs of heart damage, including diffuse myocardial fibrosis – a form of scarring in the heart muscle.

Cardiovascular disease is the leading cause of death worldwide, and poor air quality has been linked to increased risk of cardiac disease. However, until now, the underlying changes in the heart resulting from air pollution exposure were unclear. This study sheds light on what drives this increased risk at the tissue level, providing valuable insights for healthcare providers and policymakers.

The researchers used cardiac MRI to quantify myocardial fibrosis and assess its association with long-term exposure to PM2.5 particles – small enough to enter the bloodstream through the lungs. They evaluated the effects of air pollution on both healthy individuals and those with heart disease, involving 201 healthy controls and 493 patients with dilated cardiomyopathy.

The study revealed that higher long-term exposure to fine particulate air pollution was linked with higher levels of myocardial fibrosis in both groups, suggesting that myocardial fibrosis may be an underlying mechanism by which air pollution leads to cardiovascular complications. Notably, the largest effects were seen in women, smokers, and patients with hypertension.

This research adds to growing evidence that air pollution is a cardiovascular risk factor, contributing to residual risk not accounted for by conventional clinical predictors such as smoking or hypertension. The study’s findings have significant implications for public health measures to reduce long-term air pollution exposure.

“We know that if you’re exposed to air pollution, you’re at higher risk of cardiac disease,” said senior author Kate Hanneman, M.D., M.P.H., from the Department of Medical Imaging at the Temerty Faculty of Medicine, University of Toronto and University Health Network in Toronto. “Our study suggests that air quality may play a significant role in changes to heart structure, potentially setting the stage for future cardiovascular disease.”

Knowing a patient’s long-term air pollution exposure history could help refine heart disease risk assessment and address the health inequities that air pollution contributes to both in level of exposure and effect. For instance, if an individual works outside in an area with poor air quality, healthcare providers could incorporate that exposure history into heart disease risk assessment.

The study reinforces that there are no safe exposure limits, emphasizing the need for public health measures to further reduce long-term air pollution exposure. While improvements have been made over the past decade in Canada and the United States, there is still a long way to go.

In conclusion, this study highlights the importance of medical imaging in research and clinical developments going forward, particularly in identifying and quantifying health effects of environmental exposures.

Continue Reading

Trending