Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Chemistry

Unlocking the Secrets of Atomic Motion: A Revolutionary Discovery at the Nanoscale

A pioneering team at the University of Maryland has captured the first-ever images of atomic thermal vibrations, unlocking an unseen world of motion within two-dimensional materials. Their innovative electron ptychography technique revealed elusive “moiré phasons,” a long-theorized phenomenon that governs heat, electronic behavior, and structural order at the atomic level. This discovery not only confirms decades-old theories but also provides a new lens for building the future of quantum computing, ultra-efficient electronics, and advanced nanosensors.

Avatar photo

Published

on

The study of atomic-scale phenomena has led researchers to a groundbreaking discovery that could reshape the design of quantum technologies and ultrathin electronics. Yichao Zhang, an assistant professor in the University of Maryland Department of Materials Science and Engineering, has developed an innovative technique called “electron ptychography” to directly image the thermal vibrations of individual atoms. This achievement was published in the journal Science on July 24.

Two-dimensional materials, which are sheet-like structures a few nanometers thick, have been explored as new components for next-generation quantum and electronic devices. A crucial feature of twisted two-dimensional materials is “moiré phasons,” essential to understanding their thermal conductivity, electronic behavior, and structural order. However, detecting moiré phasons experimentally had proven challenging, hindering further research in these revolutionary materials.

Zhang’s team overcame this challenge by employing electron ptychography, a technique that achieved the highest resolution documented (better than 15 picometers) and detected the blurring of individual atoms caused by thermal vibrations. This groundbreaking study revealed that spatially localized moiré phasons dominate thermal vibrations in twisted two-dimensional materials, fundamentally reshaping our understanding of their impact.

The breakthrough confirmed long-standing theoretical predictions of moiré phasons and demonstrated that electron ptychography can be used to map thermal vibrations with atomic precision for the first time. This achievement opens up new possibilities for exploring previously hidden physics in quantum materials.

“This is like decoding a hidden language of atomic motion,” said Zhang. “Electron ptychography lets us see these subtle vibrations directly. Now we have a powerful new method to explore previously hidden physics, which will accelerate discoveries in two-dimensional quantum materials.”

Zhang’s research team will next focus on resolving how thermal vibrations are affected by defects and interfaces in quantum and electronic materials. Controlling the thermal vibration behavior of these materials could enable the design of novel devices with tailored thermal, electronic, and optical properties – paving the way for advances in quantum computing, energy-efficient electronics, and nanoscale sensors.

Batteries

Unlocking Battery Secrets at the Atomic Scale

Scientists have cracked open a mysterious layer inside batteries, using cutting-edge 3D atomic force microscopy to capture the dynamic molecular structures at their solid-liquid interfaces. These once-invisible electrical double layers (EDLs) twist, break, and reform in response to surface irregularities phenomena never seen before in real-world battery systems. The findings don t just refine our understanding of how batteries work at the microscopic level they could fundamentally change how we build and design next-generation energy storage.

Avatar photo

Published

on

By

The mysteries hidden within your battery are finally being unraveled by scientists at the University of Illinois Urbana-Champaign. Led by Professor Yingjie Zhang, a team has completed an investigation into the nonuniformity of liquid electrolytes at solid-liquid interfaces in electrochemical cells – a long-overlooked aspect that holds significant technological implications.

The researchers used 3D atomic force microscopy to study the molecular structure of electrical double layers (EDLs), which self-organize into nanometer-thick layers at the interface between the liquid electrolyte and solid conductor. Their findings revealed three primary responses in EDLs: bending, breaking, and reconnecting – patterns that are quite universal and mainly driven by the finite size of liquid molecules.

The study provides a groundbreaking understanding of electrochemical cells and has significant implications for battery technology. By shedding light on the nonuniformity of liquid electrolytes at solid-liquid interfaces, researchers can now develop new chapters in electrochemistry textbooks and inform technological applications.

“We have resolved the EDLs in realistic, heterogeneous electrochemical systems, which is a holy grain in electrochemistry,” said Professor Zhang. “Besides the practical implications in technology, we are starting to develop new chapters in electrochemistry textbooks.”

The research team also includes graduate student Qian Ai as the lead author and other contributors from the University of Illinois Urbana-Champaign. Support was provided by the Air Force Office of Scientific Research.

This study marks a significant step forward in understanding the atomic-scale secrets within batteries, paving the way for improved battery technology and innovative applications.

Continue Reading

Black Holes

“Cosmic Colliders: How Ghost Particles May Decide the Fate of Collapsing Stars”

Neutrinos, ghostly particles barely interacting with matter, may secretly be reshaping the fates of massive stars. New research suggests that as stars collapse, they form natural “neutrino colliders,” allowing scientists to probe these elusive particles in ways never possible on Earth. If neutrinos do interact through yet-undiscovered forces, they could cause stars to collapse into black holes instead of neutron stars, reshaping how we understand cosmic evolution.

Avatar photo

Published

on

By

Cosmic particles known as neutrinos have long been shrouded in mystery, their properties and behavior still not fully understood by scientists. These ghostly entities, which come in three “flavors” – electron, muon, and tau – can be lethal to massive stars more than 10 times the size of our sun. Neutrinos are notorious for being slippery, making it nearly impossible to collide them with each other in a lab setting.

Recently, researchers from the Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS) have made a groundbreaking discovery through theoretical calculations. They found that massive stars can act as “neutrino colliders,” where neutrinos steal thermal energy from these stars, causing their electrons to move at nearly the speed of light. This drives the star to instability and collapse.

As the collapsing star’s density becomes incredibly high, its neutrinos become trapped, leading to a series of collisions among themselves. With purely standard model interactions, the neutrinos will predominantly be electron flavor, resulting in a relatively “cold” matter core that might leave behind a neutron star remnant.

However, if secret interactions are at play, changing the flavor of neutrinos radically, the outcome is drastically different. In this scenario, neutrinos of all flavors collide, producing a mostly neutron “hot” core that may eventually give rise to a black hole remnant.

Future experiments like the Deep Underground Neutrino Experiment (DUNE) at Fermi National Accelerator Lab might be able to test these ideas, and observations of neutrinos or gravitational waves from collapsing stars could provide further insights into this phenomenon. The research, led by UC San Diego researchers and published in Physical Review Letters, has been funded by institutions such as the National Science Foundation and the Department of Energy, underscoring the importance of continued study in this area.

Continue Reading

Chemistry

Breaking Down Barriers: Scientists Uncover the Secrets of Quantum Tunneling

For the first time ever, scientists have watched electrons perform a bizarre quantum feat: tunneling through atomic barriers by not just slipping through, but doubling back and slamming into the nucleus mid-tunnel. This surprising finding, led by POSTECH and Max Planck physicists, redefines our understanding of quantum tunneling—a process that powers everything from the sun to your smartphone.

Avatar photo

Published

on

By

In a groundbreaking study published in Physical Review Letters, Professor Dong Eon Kim from POSTECH’s Department of Physics and his research team have successfully unraveled the mystery of electron tunneling, a fundamental concept in quantum mechanics. This achievement marks a significant milestone in understanding one of the most enduring enigmas in physics – a phenomenon that has puzzled scientists for over 100 years.

Quantum tunneling is a process where electrons pass through energy barriers (or “walls”) that they seemingly cannot surmount with their energy, much like digging a tunnel through them. This phenomenon underlies the operation of semiconductors, which power smartphones and computers, as well as nuclear fusion – the process that generates light and energy in the sun.

Until now, while some understanding existed about what happens before and after an electron passes through a tunnel, the exact behavior of the electron as it traverses the barrier remained unclear. Enter Professor Kim’s team, who collaborated with researchers from the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, to conduct an experiment using intense laser pulses to induce electron tunneling in atoms.

The results revealed a surprising phenomenon: electrons do not simply pass through the barrier but collide again with the atomic nucleus inside the tunnel. This process was dubbed “under-the-barrier recollision” (UBR) by the research team. Until now, it was believed that electrons could only interact with the nucleus after exiting the tunnel, making this a groundbreaking discovery.

Moreover, during UBR, electrons gain energy inside the barrier and collide again with the nucleus, strengthening what is known as “Freeman resonance.” This ionization process was significantly greater than previously observed and remained largely unaffected by changes in laser intensity – a completely new finding that defied existing theories.

This research marks a crucial step forward in understanding quantum tunneling dynamics. As such, it has significant implications for the development of advanced technologies like semiconductors, quantum computers, and ultrafast lasers, which rely on precise control over electron behavior and increased efficiency.

Professor Kim emphasizes, “Through this study, we’ve found clues about how electrons behave when they pass through the atomic wall.” He concludes, “Now, we can finally understand tunneling more deeply and control it as we wish.”

This research received support from the National Research Foundation of Korea and the Capacity Development Project of the Korea Institute for Advancement of Technology.

Continue Reading

Trending