Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Materials Science

Breaking the Limit: Scientists Heat Gold to Record-Breaking 19,000 Kelvin, Defying Long-Held Theoretical Limits

Physicists have heated gold to over 19,000 Kelvin, more than 14 times its melting point, without melting it, smashing the long-standing “entropy catastrophe” limit. Using an ultra-fast laser pulse at SLAC’s Linac Coherent Light Source, they kept the gold crystalline at extreme heat, opening new frontiers in high-energy-density physics, fusion research, and planetary science.

Avatar photo

Published

on

Rewritten Article:

In a groundbreaking study published in the journal Nature, scientists have successfully heated gold to an unprecedented 19,000 Kelvin (33,740 degrees Fahrenheit), shattering a long-held theoretical limit known as the entropy catastrophe. This achievement not only breaks a temperature record but also overturns a fundamental theory that solids cannot remain stable above three times their melting point without spontaneously melting.

The research team, led by Thomas White, Clemons-Magee Endowed Professor in Physics at the University of Nevada, Reno, used an extremely powerful laser at Stanford University’s SLAC National Accelerator Laboratory to heat a thin gold foil. The speed with which the gold was heated appears to be the reason it remained solid, suggesting that the limit of superheating solids may be far higher – or nonexistent – if heating occurs quickly enough.

To measure the temperature inside the hot gold, researchers employed the Linac Coherent Light Source, a 3-kilometer-long X-ray laser at SLAC. This allowed them to probe the temperature of warm dense states encountered during the implosion phase of inertial fusion energy experiments for the first time.

The findings have significant implications for the field of high-energy-density physics and fusion research. Bob Nagler, staff scientist at SLAC, noted that this development paves the way for temperature diagnostics across a broad range of high-energy-density environments, offering a direct method currently available for probing the temperature of warm dense states encountered during the implosion phase of inertial fusion energy experiments.

The study, funded by the National Nuclear Security Administration, is the result of a decade-long collaboration between researchers from various institutions, including Columbia University, Princeton University, and the University of Padova. The research team’s work has opened new doors in studies of superheated materials, and their findings are poised to make a transformative contribution to our understanding and control of fusion-relevant plasma conditions.

As Jahleel Hudson, director at the Techology and Partnerships Office of the NNSA, noted, “The National Nuclear Security Administrations’ Academics Program is a proud supporter of the groundbreaking innovation and continued learning that Dr. White and his team are leading for furthering future critical research areas beneficial to the Nuclear Security Enterprise.”

Several graduate students and undergraduate students were coauthors on the study, including doctoral student Travis Griffin, who expressed his gratitude for the opportunity to contribute to cutting-edge science using billion-dollar experimental platforms alongside world-class collaborators.

The research has far-reaching implications, not only for the field of physics but also for our understanding of planetary interiors. As White noted, “This development paves the way for temperature diagnostics across a broad range of high-energy-density environments.”

Computer Modeling

Unveiling the Hidden Power of Quantum Computers: Scientists Discover Forgotten Particle that Could Unlock Universal Computation

Scientists may have uncovered the missing piece of quantum computing by reviving a particle once dismissed as useless. This particle, called the neglecton, could give fragile quantum systems the full power they need by working alongside Ising anyons. What was once considered mathematical waste may now hold the key to building universal quantum computers, turning discarded theory into a pathway toward the future of technology.

Avatar photo

Published

on

By

The discovery of the “neglecton” particle, previously discarded in traditional approaches to topological quantum computation, has brought scientists closer to unlocking the full power of quantum computers. This new anyon emerges naturally from a broader mathematical framework and provides exactly the missing ingredient needed to complete the computational toolkit.

In a study published in Nature Communications, a team of mathematicians and physicists led by Aaron Lauda, professor of mathematics, physics, and astronomy at the USC Dornsife College of Letters, Arts, and Sciences, has demonstrated that Ising anyons can be made universal through braiding alone when combined with the newly discovered neglecton particle.

The breakthrough illustrates how abstract mathematics can solve concrete engineering problems in unexpected ways. By embracing mathematical structures previously considered useless, researchers have unlocked a whole new chapter for quantum information science.

“This work moves us closer to universal quantum computing with particles we already know how to create,” Lauda said. “The math gives a clear target: If experimentalists can find a way to realize this extra stationary anyon, it could unlock the full power of Ising-based systems.”

The research opens new directions both in theory and in practice, with mathematicians working to extend their framework to other parameter values and clarify the role of unitarity in non-semisimple TQFTs. Experimentalists aim to identify specific material platforms where the stationary neglecton could arise and develop protocols that translate their braiding-based approach into realizable quantum operations.

The study was supported by National Science Foundation Grants, Army Research Office Grants, Simons Foundation Collaboration Grant, and PSC CUNY Enhanced Award. The team of researchers includes Filippo Iulianelli, Sung Kim, and Joshua Sussan, among others.

In conclusion, the discovery of the neglecton particle has brought scientists closer to unlocking the full power of quantum computers, offering new directions in theory and practice, and highlighting the potential for abstract mathematics to solve concrete engineering problems.

Continue Reading

Biochemistry

Shape-Shifting Catalysts: Revolutionizing Green Chemistry with a Single Atom

A team in Milan has developed a first-of-its-kind single-atom catalyst that acts like a molecular switch, enabling cleaner, more adaptable chemical reactions. Stable, recyclable, and eco-friendly, it marks a major step toward programmable sustainable chemistry.

Avatar photo

Published

on

By

The scientific community has witnessed a groundbreaking development in sustainable chemistry with the creation of a shape-shifting single-atom catalyst at the Politecnico di Milano. This innovative material has demonstrated the capability to selectively adapt its chemical activity, paving the way for more efficient and programmable industrial processes.

Published in the Journal of the American Chemical Society, one of the world’s most esteemed scientific journals in chemistry, this study marks a significant breakthrough in the field of single-atom catalysts. For the first time, scientists have successfully designed a material that can change its catalytic function depending on the chemical environment, much like a ‘molecular switch.’ This allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

The research focuses on a palladium-based catalyst in atomic form encapsulated in a specially designed organic structure. This unique setup enables the material to ‘switch’ between two essential reactions in organic chemistry – bioreaction and carbon-carbon coupling – simply by varying the reaction conditions. The team has successfully demonstrated this phenomenon, showcasing the potential for more intelligent, selective, and sustainable chemical transformations.

Lead researcher Gianvito Vilé, lecturer at the Politecnico di Milano’s ‘Giulio Natta’ Department of Chemistry, Materials and Chemical Engineering, emphasizes the significance of their discovery: “We have created a system that can modulate catalytic reactivity in a controlled manner, paving the way for more intelligent, selective, and sustainable chemical transformations.”

The new catalyst stands out not only for its reaction flexibility but also for its stability, recyclability, and reduced environmental impact. ‘Green’ analyses conducted by the team reveal a substantial decrease in waste and hazardous reagents, making it an exemplary model for sustainable chemistry.

This study is the result of an international collaboration with esteemed institutions from around the world, including the University of Milan-Bicocca, the University of Ostrava (Czech Republic), the University of Graz (Austria), and Kunsan National University (South Korea). The joint efforts of these researchers have led to a groundbreaking achievement that has far-reaching implications for the field of green chemistry.

Continue Reading

Chemistry

Scientists Confirm a Fundamental Quantum Rule for the First Time

Scientists have, for the first time, experimentally proven that angular momentum is conserved even when a single photon splits into two, pushing quantum physics to its most fundamental limits. Using ultra-precise equipment, the team captured this elusive process—comparable to finding a needle in a haystack—confirming a cornerstone law of nature at the photon level.

Avatar photo

Published

on

By

Scientists at Tampere University and their international collaborators have made a groundbreaking discovery in the field of quantum physics. They have experimentally confirmed that angular momentum is conserved when a single photon is converted into a pair, validating a key principle of physics at the quantum level for the first time. This breakthrough has significant implications for creating complex quantum states useful in computing, communication, and sensing.

In essence, the researchers have tested the conservation laws of rotating objects to see if they also apply to light. They found that when a photon with zero orbital angular momentum is split into two photons, the OAM quanta of both photons must add to zero. This means that if one of the newly generated photons has one OAM quanta, its partner photon must have the opposite, i.e., negative OAM quanta.

The researchers used an extremely stable optical setup and delicate measurements to record enough successful conversions such that they could confirm the fundamental conservation law. They also observed first indications of quantum entanglement in the generated photon pairs, which suggests that the technique can be extended to create more complex photonic quantum states.

This work is not only of fundamental importance but also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways. The researchers plan to improve the overall efficiency of their scheme and develop better strategies for measuring the generated quantum state such that in the future these photonic needles can be found easier in the laboratory haystack.

The confirmation of this fundamental quantum rule opens new possibilities for creating complex quantum states useful in computing, communication, and sensing. It also takes us a significant step closer to generating novel quantum states, where the photons are entangled in all possible ways, i.e., in space, time, and polarization.

Continue Reading

Trending