Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Diabetes

A Double-Edged Approach: Targeting Inflammation for a Potential Type 1 Diabetes Treatment

A new strategy may help prevent or slow the progression of Type 1 diabetes.

Avatar photo

Published

on

The article presents a promising strategy to prevent or slow the progression of Type 1 diabetes by targeting an inflammation-related protein known to drive the disease. Researchers have found that applying a molecular method to block inflammation signaling through the tyrosine kinase 2 (TYK2) protein reduces harmful inflammation in the pancreas, protecting insulin-producing beta cells and calming the immune system’s attack on those cells.

Type 1 diabetes is a lifelong condition where the immune system mistakenly attacks and destroys insulin-producing beta cells in the pancreas. This leads to high blood sugar levels, requiring ongoing insulin therapy and careful monitoring to avoid severe health complications.

The study, co-led by Indiana University School of Medicine researchers, presents a potential new strategy using a medication that inhibits TYK2, which is already approved for the treatment of psoriasis, an autoimmune condition causing skin inflammation. This finding is exciting because there is already a drug on the market that can do this for psoriasis, which could help move toward testing it for Type 1 diabetes more quickly.

Past genetic studies have shown that people with naturally lower TYK2 activity are less likely to develop Type 1 diabetes, further supporting the group’s approach for future treatments using this TYK2 inhibitor approach.

The researchers hope their findings will support future clinical trials to safely assess the efficacy of a new drug or drug combination in humans. They emphasize the importance of initiating translational studies to evaluate the impact of TYK2 inhibition alone or in combination with other already approved drugs in individuals at-risk or with recent onset Type 1 diabetes.

The study’s lead author, Farooq Syed, PhD, notes that their preclinical models suggest that the treatment might work in people as well. The next step is to initiate translational studies to evaluate the impact of TYK2 inhibition alone or in combination with other already approved drugs in individuals at-risk or with recent onset Type 1 diabetes.

The research team hopes to support future clinical trials to safely assess the efficacy of a new drug or drug combination in humans, offering hope for a potential treatment approach for Type 1 diabetes.

Allergy

“The Silent Invader: How a Parasitic Worm Evades Detection and What it Can Teach Us About Pain Relief”

Scientists have discovered a parasite that can sneak into your skin without you feeling a thing. The worm, Schistosoma mansoni, has evolved a way to switch off the body’s pain and itch signals, letting it invade undetected. By blocking certain nerve pathways, it avoids triggering the immune system’s alarms. This stealth tactic not only helps the worm survive, but could inspire new kinds of pain treatments and even preventative creams to protect people from infection.

Avatar photo

Published

on

A new study published in The Journal of Immunology has made an intriguing discovery about how a parasitic worm evades detection and what it can teach us about pain relief. Researchers from Tulane School of Medicine found that the Schistosoma mansoni worm, which causes schistosomiasis, suppresses neurons in the skin to avoid triggering an immune response.

When this worm penetrates human skin, typically through contact with infested water, it produces molecules that block a protein called TRPV1+, which is responsible for sending pain signals to the brain. This clever mechanism allows the worm to infect the skin largely undetected.

The researchers believe that the S. mansoni worm evolved this strategy to enhance its own survival and found that blocking TRPV1+ also reduced disease severity in mice infected with the parasite. The study suggests that identifying the molecules responsible for suppressing TRPV1+ could lead to new painkillers that do not rely on opioids.

Moreover, the researchers discovered that TRPV1+ is essential for initiating host protection against S. mansoni infection. When this protein is activated, it triggers a rapid mobilization of immune cells, which induces inflammation and helps fight off the parasite. This finding highlights the critical role of neurons in pain-sensing and immune responses.

The study’s lead author, Dr. De’Broski R. Herbert, emphasizes that identifying these molecules could inform preventive treatments for schistosomiasis. He envisions a topical agent that activates TRPV1+ to prevent infection from contaminated water for individuals at risk of acquiring S. mansoni.

This groundbreaking research has the potential to revolutionize our understanding of pain relief and immune responses, offering new avenues for developing innovative therapies that could benefit millions worldwide.

Continue Reading

Colon Cancer

Scientists Discover a Tiny Molecule That Could Revolutionize Weight Loss Treatment

Researchers at the Salk Institute have used CRISPR to uncover hidden microproteins that control fat cell growth and lipid storage, identifying one confirmed target, Adipocyte-smORF-1183. This breakthrough could lead to more effective obesity treatments, surpassing the limitations of current drugs like GLP-1.

Avatar photo

Published

on

The fight against obesity has been an ongoing battle for decades. With over one billion people worldwide affected by this condition, scientists are constantly seeking new and effective treatments. Recently, researchers at the Salk Institute have made a groundbreaking discovery that could potentially change the game. They’ve identified a tiny molecule called Adipocyte-smORF-1183, which plays a crucial role in regulating fat cell biology and lipid accumulation.

This breakthrough was made possible by using CRISPR gene editing to screen thousands of fat cell genes. The researchers found dozens of genes that likely code for microproteins involved in either fat cell proliferation or lipid accumulation. One of these potential microproteins, Adipocyte-smORF-1183, was verified to influence lipid droplet formation in fat cells.

The discovery of this molecule is a significant step towards understanding the complex energy storage system in our bodies. It also opens up new possibilities for developing targeted therapies that can specifically address obesity and related metabolic disorders.

While more research is needed to fully understand the implications of Adipocyte-smORF-1183, this breakthrough is a promising development in the fight against obesity. As scientists continue to study this molecule and its role in fat cell biology, we may see new and innovative treatments emerge that can help millions of people worldwide manage their weight and improve their overall health.

In related news, researchers at Scripps Research Institute have also been studying microproteins involved in fat cell differentiation and proliferation. Their work has identified several potential candidates for further investigation, which could lead to new therapeutic targets for obesity and metabolic disorders.

The study was supported by various grants from the National Institutes of Health, Ferring Foundation, Clayton Foundation, and Larry and Carol Greenfield Technology Fund. Further validation or screening of new cell libraries will expand the list of potential drug candidates, setting the stage for the new-and-improved obesity and metabolic disorder therapeutics of the future.

Continue Reading

Chronic Illness

Scientists Uncover Hidden Brain Shortcut for Weight Loss without Nausea

Scientists have uncovered a way to promote weight loss and improve blood sugar control without the unpleasant side effects of current GLP-1 drugs. By shifting focus from neurons to brain support cells that produce appetite-suppressing molecules, they developed a modified compound, TDN, that worked in animal tests without causing nausea or vomiting.

Avatar photo

Published

on

Scientists have made a groundbreaking discovery that could revolutionize the way we approach weight loss. A multidisciplinary team led by Robert Doyle, a chemistry professor at Syracuse University, has identified a hidden brain shortcut that can help people lose weight without experiencing nausea, a common side effect of current weight loss medications.

Current weight loss and diabetes drugs often target brain neurons that control appetite but frequently cause unpleasant side effects like nausea and vomiting. In fact, 70% of patients stop treatment within a year due to these side effects. Doyle’s team has been researching alternative targets for treating obesity and diabetes, looking beyond neurons to study “support” cells such as glia and astrocytes.

The research team discovered that support cells in the hindbrain naturally produce a molecule named octadecaneuropeptide (ODN), which suppresses appetite. In lab tests, injecting ODN directly into rats’ brains made them lose weight and improve how they processed glucose. However, injecting directly into the brain isn’t a practical treatment for people.

To overcome this limitation, researchers created a new version of the molecule named tridecaneuropeptide (TDN), which could be given to human patients through regular injections akin to today’s Ozempic or Zepbound. When tested in obese mice and musk shrews, TDN helped the animals lose weight and respond better to insulin without causing nausea or vomiting.

One goal of the research team is to produce weight loss without aiming new therapeutic molecules at neurons. The new TDN molecule bypasses neurons, taking a shortcut to directly target support cells, which researchers found also produce appetite suppression. This approach has the potential to reduce the unpleasant side effects caused by GLP-1 drugs.

“The idea is to start the process halfway through, reducing the marathon of chemical reactions and negative side effects,” says Doyle. “If we could hit that downstream process directly, then potentially we wouldn’t have to use GLP-1 drugs with their side effects. Or we could reduce their dose, improving the toleration of these drugs.”

A new company called CoronationBio has been launched to turn this discovery into a real-world treatment. The company has licensed intellectual property related to ODN derivatives for the treatment of obesity and cardio-metabolic disease from Syracuse University and the University of Pennsylvania.

Their focus is on translating candidates into the clinic, aiming to start human trials in 2026 or 2027. This breakthrough has the potential to revolutionize the way we approach weight loss, providing a more comfortable and effective solution for millions of people worldwide.

Continue Reading

Trending