Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Air Pollution

A Step Towards Cleaner Iron Extraction: Harnessing Electricity for a Greener Future

Iron and its alloys, such as steel and cast iron, dominate the modern world, and there’s growing demand for iron-derived products. Traditionally, blast furnaces transform iron ore into purified elemental metal, but the process requires a lot of energy and emits air pollution. Now, researchers report that they’ve developed a cleaner method to extract iron from a synthetic iron ore using electrochemistry, which they say could become cost-competitive with blast furnaces.

Avatar photo

Published

on

The world’s reliance on iron and its alloys, such as steel and cast iron, has never been more pronounced. As demand continues to grow, researchers are racing to develop cleaner methods for extracting this vital metal. In a breakthrough study published in ACS Energy Letters, scientists have successfully employed electrochemistry to transform synthetic iron ore into purified elemental metal at low temperatures, paving the way for a potentially cost-competitive and environmentally friendly process.

Traditionally, blast furnaces have been used to produce iron, but these high-energy processes come with significant air pollution emissions. In contrast, electrochemical ironmaking offers a promising alternative that could reduce greenhouse gas emissions, sulfur dioxide, and particulate matter. Led by Paul Kempler, the study’s corresponding author, researchers initially experimented with this process using solutions containing solid iron(III) oxide particles and sodium hydroxide.

However, when natural iron ores with irregular particle sizes and impurities were tested, the low-temperature process was not selective enough. To overcome this hurdle, Kempler collaborated with a new team of researchers to identify suitable iron ore-like feedstocks that could support scalable growth of the electrochemical reaction. They created high surface area iron oxide particles with internal holes and cavities to investigate how the nanoscale morphology of these particles affected the electrochemical process.

The researchers then converted some of these particles into micrometer-wide iron oxide particles, mimicking the morphology of natural ores. These particles contained only trace impurities like carbon and barium. A specialized cathode was designed to pull iron metal from a sodium hydroxide solution containing the iron oxide particles as current passed through it.

In experiments, dense iron oxides were reduced most selectively at a current density of 50 milliamperes per square centimeter, similar to rapidly charging lithium-ion batteries. Conversely, loose particles with higher porosity facilitated more efficient electrochemical iron production, compared to those made to resemble the less porous natural iron ore hematite.

The researchers estimated that their electrochemical ironmaking method could produce iron at less than $600 per metric ton, comparable to traditional methods. Higher current densities, up to 600 milliamperes per square centimeter, could be achieved using particles with nanoscale porosity. Further advances in electrochemical cell design and techniques will be required before the technology sees commercial adoption.

The study received funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. This breakthrough has significant implications for the iron industry, potentially leading to cleaner production processes, reduced air pollution emissions, and a more sustainable future.

Air Pollution

The Hidden Dangers of Air Pollution: How It Quietly Damages Your Heart

Breathing polluted air—even at levels considered “safe”—may quietly damage your heart. A new study using advanced MRI scans found that people exposed to more air pollution showed early signs of scarring in their heart muscle, which can lead to heart failure over time. This damage showed up in both healthy individuals and people with heart conditions, and was especially noticeable in women, smokers, and those with high blood pressure.

Avatar photo

Published

on

The Hidden Dangers of Air Pollution: How It Quietly Damages Your Heart

A recent study published in Radiology has made a groundbreaking discovery about the impact of air pollution on our cardiovascular system. Researchers using cardiac MRI have found that even low levels of fine particulate matter in the air can lead to early signs of heart damage, including diffuse myocardial fibrosis – a form of scarring in the heart muscle.

Cardiovascular disease is the leading cause of death worldwide, and poor air quality has been linked to increased risk of cardiac disease. However, until now, the underlying changes in the heart resulting from air pollution exposure were unclear. This study sheds light on what drives this increased risk at the tissue level, providing valuable insights for healthcare providers and policymakers.

The researchers used cardiac MRI to quantify myocardial fibrosis and assess its association with long-term exposure to PM2.5 particles – small enough to enter the bloodstream through the lungs. They evaluated the effects of air pollution on both healthy individuals and those with heart disease, involving 201 healthy controls and 493 patients with dilated cardiomyopathy.

The study revealed that higher long-term exposure to fine particulate air pollution was linked with higher levels of myocardial fibrosis in both groups, suggesting that myocardial fibrosis may be an underlying mechanism by which air pollution leads to cardiovascular complications. Notably, the largest effects were seen in women, smokers, and patients with hypertension.

This research adds to growing evidence that air pollution is a cardiovascular risk factor, contributing to residual risk not accounted for by conventional clinical predictors such as smoking or hypertension. The study’s findings have significant implications for public health measures to reduce long-term air pollution exposure.

“We know that if you’re exposed to air pollution, you’re at higher risk of cardiac disease,” said senior author Kate Hanneman, M.D., M.P.H., from the Department of Medical Imaging at the Temerty Faculty of Medicine, University of Toronto and University Health Network in Toronto. “Our study suggests that air quality may play a significant role in changes to heart structure, potentially setting the stage for future cardiovascular disease.”

Knowing a patient’s long-term air pollution exposure history could help refine heart disease risk assessment and address the health inequities that air pollution contributes to both in level of exposure and effect. For instance, if an individual works outside in an area with poor air quality, healthcare providers could incorporate that exposure history into heart disease risk assessment.

The study reinforces that there are no safe exposure limits, emphasizing the need for public health measures to further reduce long-term air pollution exposure. While improvements have been made over the past decade in Canada and the United States, there is still a long way to go.

In conclusion, this study highlights the importance of medical imaging in research and clinical developments going forward, particularly in identifying and quantifying health effects of environmental exposures.

Continue Reading

Air Pollution

Toxic Twin Found: MCCPs Spotted in U.S. Air for First Time

In a surprising twist during an air quality study in Oklahoma, researchers detected MCCPs an industrial pollutant never before measured in the Western Hemisphere’s atmosphere. The team suspects these toxic compounds are entering the air through biosolid fertilizers derived from sewage sludge. While these pollutants are not yet regulated like their SCCP cousins, their similarity to dangerous “forever chemicals” and unexpected presence raise red flags about how chemical substitutions and waste disposal may be silently contaminating rural air.

Avatar photo

Published

on

The discovery of Medium Chain Chlorinated Paraffins (MCCPs) in the Western Hemisphere’s atmosphere has sent shockwaves through the scientific community. Researchers at the University of Colorado Boulder stumbled upon this finding while conducting a field campaign in an agricultural region of Oklahoma, using a high-tech instrument to measure aerosol particles and their growth in the atmosphere.

“We’re starting to learn more about this toxic, organic pollutant that we know is out there, and which we need to understand better,” said Daniel Katz, CU Boulder chemistry PhD student and lead author of the study. MCCPs are currently under consideration for regulation by the Stockholm Convention, a global treaty to protect human health from long-standing and widespread chemicals.

While SCCPs, their “little cousins,” have been regulated since 2009 in the United States, researchers hypothesize that this may have led to an increase in MCCP levels in the environment. This discovery highlights the unintended consequences of regulation, where one chemical is replaced by another with similar properties.

Using a nitrate chemical ionization mass spectrometer, the team measured air at the agricultural site 24 hours a day for one month. They cataloged the data and identified distinct isotopic patterns in the compounds. The chlorinated paraffins found in MCCPs showed new patterns that were different from known chemical compounds.

The makeup of MCCPs is similar to PFAS, or “forever chemicals,” which have been shown to break down slowly over time and are toxic to human health. Now that researchers know how to measure MCCPs, the next step might be to study their environmental impacts and seasonal changes in levels.

“We identified them, but we still don’t know exactly what they do when they are in the atmosphere, and they need to be investigated further,” Katz said. “I think it’s essential that we continue to have governmental agencies capable of evaluating the science and regulating these chemicals as necessary for public health and safety.”

Continue Reading

Air Pollution

The Persistent Pollutant: Uncovering the Mystery of Atmospheric Nitrates

A new study details processes that keep pollutants aloft despite a drop in emissions.

Avatar photo

Published

on

By

The persistent presence of nitrates in the atmosphere has long been a concern for environmental scientists. Despite efforts to reduce emissions over the past few decades, nitrate levels remain stubbornly high. A recent study published in Nature Communications sheds light on this enigma, revealing that chemical processes within the atmosphere are responsible for the persistence of these pollutants.

The research team led by Hokkaido University’s Professor Yoshinori Iizuka examined nitrate deposition history from 1800 to 2020 in an ice core taken from southeastern Greenland. The results showed a gradual increase in nitrates up to the 1970s, followed by a slower decline after the 1990s. This trend mirrors the changes in emissions of nitrate precursors over the same period.

The study’s findings suggest that factors other than emission reductions are driving the persistence of atmospheric nitrates. The researchers used a global chemical transport model to investigate these factors and discovered that atmospheric acidity is the key culprit. As acidity levels rise, more nitrates become trapped in particulate form, enabling them to persist longer and travel farther.

The implications of this study are significant. Accurate measurements of particulate nitrates in ice cores provide valuable data for refining climate modeling predictions. Moreover, the findings suggest that atmospheric nitrates will soon replace sulfates as the primary aerosol in the Arctic, further amplifying warming in the region.

As Professor Iizuka notes, “Ours is the first study to present accurate information for records of particulate nitrates in ice cores.” The persistence of these pollutants highlights the importance of continued research into atmospheric chemistry and climate modeling. By understanding the complex interactions within our atmosphere, we can better predict and prepare for the challenges that lie ahead.

Continue Reading

Trending