Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Black Holes

A Thread of Hot Gas: Unveiling the Hidden Matter of the Cosmos

Astronomers have uncovered a colossal, searing-hot filament of gas linking four galaxy clusters in the Shapley Supercluster a discovery that could finally solve the mystery of the Universe s missing matter. This giant thread, 10 times the mass of the Milky Way and stretching 23 million light-years, is one of the best confirmations yet of what cosmological simulations have long predicted: that vast, faint filaments connect the Universe s largest structures in a cosmic web.

Avatar photo

Published

on

The discovery of a massive thread of hot gas connecting four galaxy clusters has sent shockwaves throughout the scientific community. This filament, which clocks in at over 10 million degrees, is a staggering 10 times the mass of the Milky Way and stretches diagonally away from us through the Shapley Supercluster for an astonishing 23 million light-years.

Astronomers have long searched for this elusive matter, which makes up over one-third of the “normal” matter in the local Universe. This missing material has been hiding in plain sight, woven into a vast network of filaments that underpin the structure of everything we see around us – the cosmic web.

The European Space Agency’s XMM-Newton and JAXA’s Suzaku X-ray space telescopes have made this groundbreaking discovery possible by combining their unique capabilities. XMM-Newton pinpointed contaminating sources of X-rays, while Suzaku mapped the filament’s faint light over a wide region of space.

“This finding is a game-changer for our understanding of the cosmos,” says lead researcher Konstantinos Migkas of Leiden Observatory in the Netherlands. “For the first time, our results closely match what we see in our leading model of the cosmos – something that’s not happened before. It seems that the simulations were right all along.”

The filament is a crucial piece in the puzzle of the cosmic web, and its discovery has significant implications for our understanding of the Universe. As well as revealing a huge and previously unseen thread of matter running through the nearby cosmos, this finding shows how some of the densest and most extreme structures in the Universe – galaxy clusters – are connected over colossal distances.

“This research is a great example of collaboration between telescopes, and creates a new benchmark for how to spot the light coming from the faint filaments of the cosmic web,” adds Norbert Schartel, ESA XMM-Newton Project Scientist. “More fundamentally, it reinforces our standard model of the cosmos and validates decades of simulations: it seems that the ‘missing’ matter may truly be lurking in hard-to-see threads woven across the Universe.”

The study of the cosmic web is an ongoing effort, with ESA’s Euclid mission launched in 2023 to explore its structure and history. The mission is also digging deep into the nature of dark matter and energy – neither of which have ever been observed, despite accounting for a whopping 95% of the Universe – and working with other dark Universe detectives to solve some of the biggest and longest-standing cosmic mysteries.

Astrophysics

“Unveiling the Universe’s Secrets: The 21-Centimeter Signal and the First Stars”

Scientists are peering into the universe’s mysterious Cosmic Dawn using the faint whispers of hydrogen radio waves emitted over 13 billion years ago. These signals, particularly the elusive 21-centimeter signal, offer rare insights into the masses and behavior of the universe’s first stars—Population III stars—whose light we can’t see directly. With projects like REACH and the upcoming Square Kilometre Array (SKA), researchers are unlocking a cosmic treasure map, predicting how early starlight and powerful X-ray binaries influenced these signals. It’s a thrilling detective story unfolding not through images, but through the statistical patterns of ancient radiation.

Avatar photo

Published

on

The universe’s transition from darkness to light was a pivotal moment in its development, known as the Cosmic Dawn. However, despite the most powerful telescopes, we cannot directly observe these earliest stars. This makes determining their properties one of the biggest challenges in astronomy.

An international team of astronomers led by the University of Cambridge has made significant progress in understanding how the first stars and their remnants affected a specific radio signal – the 21-centimeter signal – created by hydrogen atoms filling the gaps between star-forming regions, just a hundred million years after the Big Bang.

By studying this signal, researchers have shown that future radio telescopes will be able to learn about the masses of the earliest stars. Their results were reported in the journal Nature Astronomy.

“This is a unique opportunity to learn how the universe’s first light emerged from the darkness,” said Professor Anastasia Fialkov from Cambridge’s Institute of Astronomy. “The transition from a cold, dark universe to one filled with stars is a story we’re only beginning to understand.”

The 21-centimeter signal provides a rare window into the universe’s infancy. It is influenced by the radiation from early stars and black holes. Researchers have found that this signal is sensitive to the masses of first stars.

Fialkov leads the theory group of REACH (the Radio Experiment for the Analysis of Cosmic Hydrogen). REACH is a radio antenna still in its calibration stage but promises to reveal data about the early universe. The Square Kilometre Array (SKA), under construction, will map fluctuations in cosmic signals across vast regions of the sky.

Both projects are vital in probing the masses, luminosities, and distribution of the universe’s earliest stars. In this study, Fialkov and her collaborators developed a model that makes predictions for the 21-centimeter signal for both REACH and SKA. They found that the signal is sensitive to the masses of first stars.

“We are the first group to consistently model the dependence of the 21-centimeter signal on the masses of the first stars, including the impact of ultraviolet starlight and X-ray emissions from X-ray binaries produced when the first stars die,” said Fialkov. “These insights are derived from simulations that integrate the primordial conditions of the universe, such as the hydrogen-helium composition produced by the Big Bang.”

Radio astronomy relies on statistical analysis of faint signals, unlike optical telescopes like the James Webb Space Telescope, which capture vivid images. REACH and SKA will not be able to image individual stars but will provide information about entire populations of stars, X-ray binary systems, and galaxies.

“It takes a bit of imagination to connect radio data to the story of the first stars, but the implications are profound,” said Fialkov.

The predictions made in this study have huge implications for understanding the nature of the very first stars in the universe. Researchers show evidence that their radio telescopes can tell us details about the mass of those first stars and how these early lights may have been very different from today’s stars.

Radio telescopes like REACH are promising to unlock the mysteries of the infant Universe, and these predictions are essential to guide the radio observations being done from the Karoo in South Africa. The research was supported in part by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

Continue Reading

Astronomy

The Galactic Puzzle: Uncovering the Mystery of Massive Star Formation in the Milky Way’s Center

At the heart of our galaxy lies a cosmic puzzle: although the Galactic Center is packed with star-making material, massive stars form there surprisingly slowly. Using NASA’s retired SOFIA observatory, scientists captured rare high-resolution infrared views that revealed dozens of new stars being born, but not in the numbers or sizes one might expect.

Avatar photo

Published

on

The Milky Way’s central region has long been a subject of fascination for astronomers, but recent research led by Dr. James De Buizer at the SETI Institute and Dr. Wanggi Lim at IPAC at Caltech has revealed a surprising finding: massive star formation is occurring in this area at a lower rate than expected. The study primarily relied on observations from NASA’s retired SOFIA airborne observatory, focusing on three star-forming regions – Sgr B1, Sgr B2, and Sgr C – located at the heart of the Galaxy.

Contrary to previous assumptions that star formation is likely depressed near the Galactic Center, these areas have been found to produce stars with relatively low masses. Despite their dense clouds of gas and dust, conditions typically conducive to forming massive stars, these regions struggle to create such high-mass stars. Furthermore, they appear to lack sufficient material for continued star formation, suggesting that only one generation of stars is produced.

The researchers discovered over 60 presently-forming massive stars within the Galactic Center regions, but found that these areas formed fewer stars and topped out at lower stellar masses than similar-sized regions elsewhere in the Galaxy. The team’s study also suggested that extreme conditions in the Galactic Center, such as its rapid rotation and interaction with older stars and material falling towards the black hole, might be inhibiting gas clouds from forming stars.

However, Sgr B2 was found to be an exception among the studied areas, maintaining a reservoir of dense gas and dust despite having an unusually low rate of present massive star formation. The researchers proposed that this region may represent a new category of stellar nursery or challenge traditional assumptions about giant H II regions hosting massive star clusters.

The study’s findings have significant implications for our understanding of star formation in the Milky Way, highlighting the importance of continued research into the complex dynamics at play within the Galactic Center.

Continue Reading

Astronomy

Unlocking Secrets of the Cosmos: AI Reveals Milky Way’s Black Hole Spins at Near Top Speed

AI has helped astronomers crack open some of the universe s best-kept secrets by analyzing massive datasets about black holes. Using over 12 million simulations powered by high-throughput computing, scientists discovered that the Milky Way’s central black hole is spinning at nearly maximum speed. Not only did this redefine theories about black hole behavior, but it also showed that the emission is driven by hot electrons in the disk, not jets, challenging long-standing models.

Avatar photo

Published

on

By

The research team leveraged high-throughput computing capabilities provided by the Center for High Throughput Computing (CHTC) to automate computing tasks across a network of thousands of computers. This innovation allowed them to analyze millions of simulations, making it possible to extract new insights from the data behind the Event Horizon Telescope images of black holes.

The neural network was trained on synthetic data files generated by CHTC, enabling the researchers to make a better comparison between the EHT data and models. The analysis revealed that the emission near the black hole is mainly caused by extremely hot electrons in the surrounding accretion disk, rather than a jet. Additionally, the magnetic fields in the accretion disk appear to behave differently from usual theories of such disks.

Lead researcher Michael Janssen stated that defying prevailing theory is exciting but sees their AI and machine learning approach as a first step towards further improvement and extension of associated models and simulations. The research has significant implications for our understanding of black holes and the cosmos, and it will be interesting to see how this knowledge evolves in the future.

Content:

An international team of astronomers has made groundbreaking discoveries about the black hole at the center of our Milky Way using a neural network. By analyzing millions of synthetic simulations generated by the Center for High Throughput Computing (CHTC), they found that the black hole is spinning at nearly top speed, with its rotation axis pointing towards Earth.

The research team published their findings in three papers in Astronomy & Astrophysics, providing new insights into the behavior of black holes. The neural network was trained on synthetic data files generated by CHTC, enabling the researchers to make a better comparison between the Event Horizon Telescope (EHT) data and models.

Previous studies by the EHT Collaboration used only a handful of realistic synthetic data files, but the Madison-based CHTC enabled the astronomers to feed millions of such data files into a so-called Bayesian neural network. This allowed them to extract as much information as possible from the data and make a more accurate comparison with the models.

The researchers found that the emission near the black hole is mainly caused by extremely hot electrons in the surrounding accretion disk, rather than a jet. Additionally, the magnetic fields in the accretion disk appear to behave differently from usual theories of such disks.

Lead researcher Michael Janssen stated that defying prevailing theory is exciting but sees their AI and machine learning approach as a first step towards further improvement and extension of associated models and simulations. The research has significant implications for our understanding of black holes and the cosmos, and it will be interesting to see how this knowledge evolves in the future.

The Event Horizon Telescope project performed more than 12 million computing jobs in the past three years, using the Open Science Pool operated by PATh. This pool offers computing capacity contributed by more than 80 institutions across the United States, making it an ideal platform for large-scale simulations like those used in this research.

Scientific papers referenced

* Deep learning inference with the Event Horizon Telescope I: Calibration improvements and a comprehensive synthetic data library. By: M. Janssen et al. In: Astronomy & Astrophysics, 6 June 2025.
* Deep learning inference with the Event Horizon Telescope II: The Zingularity framework for Bayesian artificial neural networks. By: M. Janssen et al. In: Astronomy & Astrophysics, 6 June 2025.
* Deep learning inference with the Event Horizon Telescope III: Zingularity results from the 2017 observations and predictions for future array expansions. By: M. Janssen et al. In: Astronomy & Astrophysics, 6 June 2025.

Continue Reading

Trending