Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Computers & Math

Breaking Ground in 6G Technology: A Leap Forward in Semiconductor Innovation

Self-driving cars which eliminate traffic jams, getting a healthcare diagnosis instantly without leaving your home, or feeling the touch of loved ones based across the continent may sound like the stuff of science fiction. But new research could make all this and more a step closer to reality thanks to a radical breakthrough in semiconductor technology.

Avatar photo

Published

on

The world is on the cusp of a technological revolution that could transform the way we live, work, and interact with one another. A team of researchers from the University of Bristol has made a groundbreaking breakthrough in semiconductor technology that could supercharge 6G delivery, paving the way for previously unimaginable advancements in fields such as healthcare, transportation, and communication.

Led by Professor Martin Kuball, the research team has developed an innovative way to accelerate data transfer between scores of users, potentially across the globe. This achievement is set to revolutionize industries that rely on fast and efficient data transmission, including remote diagnostics and surgery, virtual classrooms, and advanced driver assistance systems.
Co-lead author Dr Akhil Shaji explained: “We have piloted a device technology called superlattice castellated field effect transistors (SLCFETs), in which more than 1000 fins with sub-100 nm width help drive the current. Although SLCFETs have demonstrated the highest performance in the W-band frequency range, equating to 75 gigahertz -110 GHz, the physics behind it was unknown.”
The researchers then needed to pinpoint exactly where this effect occurred, by simultaneously using ultra precision electrical measurements and optical microscopy, so it could be further studied and understood. After analysing more than 1,000 fins findings located this effect to the widest fin.
Prof Kuball added: “We also developed a 3D model using a simulator to further verify our observations. The next challenge was to study the reliability aspects of latch effect for practical applications. The rigorous testing of the device over a long duration of time showed it has no detrimental effect on device reliability or performance.”
Next steps for the work include further increasing the power density the devices can deliver, so they can offer even higher performance and serve wider audiences. Industry partners will also be bringing such next generation devices to a commercial market.

The potential benefits of this research are far-reaching, with applications in healthcare, transportation, communication, and more. The researchers at the University of Bristol are at the forefront of improving electrical performance and efficiency in a wide range of different applications and settings.
Professor Kuball leads the Centre for Device Thermography and Reliability (CDTR), which is developing next generation semiconductor electronic devices for net zero, and for communications and radar technology. It also works on improving device thermal management, electrical performance and reliability, using wide and ultra-wide bandgap semiconductors.

In conclusion, the breakthrough in semiconductor technology made by the University of Bristol’s research team has the potential to revolutionize various industries and transform human experiences in many different ways. The future is exciting, and it’s not hard to imagine a world where flying cars, virtual reality contact lenses, and other futuristic technologies become a reality.

Artificial Intelligence

Safeguarding Adolescents in a Digital Age: Experts Urge Developers to Protect Young Users from AI Risks

The effects of artificial intelligence on adolescents are nuanced and complex, according to a new report that calls on developers to prioritize features that protect young people from exploitation, manipulation and the erosion of real-world relationships.

Avatar photo

Published

on

By

The American Psychological Association (APA) has released a report calling for developers to prioritize features that protect adolescents from exploitation, manipulation, and erosion of real-world relationships in the age of artificial intelligence (AI). The report, “Artificial Intelligence and Adolescent Well-being: An APA Health Advisory,” warns against repeating the mistakes made with social media and urges stakeholders to ensure youth safety is considered early in AI development.

The APA expert advisory panel notes that adolescence is a complex period of brain development, spanning ages 10-25. During this time, age is not a foolproof marker for maturity or psychological competence. The report emphasizes the need for special safeguards aimed at younger users.

“We urge all stakeholders to ensure youth safety is considered relatively early in the evolution of AI,” said APA Chief of Psychology Mitch Prinstein, PhD. “AI offers new efficiencies and opportunities, yet its deeper integration into daily life requires careful consideration to ensure that AI tools are safe, especially for adolescents.”

The report makes several recommendations to make certain that adolescents can use AI safely:

1. Healthy boundaries with simulated human relationships: Ensure that adolescents understand the difference between interactions with humans and chatbots.
2. Age-appropriate defaults in privacy settings, interaction limits, and content: Implement transparency, human oversight, support, and rigorous testing to safeguard adolescents’ online experiences.
3. Encourage uses of AI that promote healthy development: Assist students in brainstorming, creating, summarizing, and synthesizing information while acknowledging AI’s limitations.
4. Limit access to and engagement with harmful and inaccurate content: Build protections to prevent adolescents from exposure to damaging material.
5. Protect adolescents’ data privacy and likenesses: Limit the use of adolescents’ data for targeted advertising and sale to third parties.

The report also calls for comprehensive AI literacy education, integrating it into core curricula and developing national and state guidelines for literacy education.

Additional Resources:

* Report:
* Guidance for parents on AI and keeping teens safe: [APA.org](http://APA.org)
* Resources for teens on AI literacy: [APA.org](http://APA.org)

Continue Reading

Artificial Intelligence

Self-Powered Artificial Synapse Revolutionizes Machine Vision

Despite advances in machine vision, processing visual data requires substantial computing resources and energy, limiting deployment in edge devices. Now, researchers from Japan have developed a self-powered artificial synapse that distinguishes colors with high resolution across the visible spectrum, approaching human eye capabilities. The device, which integrates dye-sensitized solar cells, generates its electricity and can perform complex logic operations without additional circuitry, paving the way for capable computer vision systems integrated in everyday devices.

Avatar photo

Published

on

By

The human visual system has long been a source of inspiration for computer vision researchers, who aim to develop machines that can see and understand the world around them with the same level of efficiency and accuracy as humans. While machine vision systems have made significant progress in recent years, they still face major challenges when it comes to processing vast amounts of visual data while consuming minimal power.

One approach to overcoming these hurdles is through neuromorphic computing, which mimics the structure and function of biological neural systems. However, two major challenges persist: achieving color recognition comparable to human vision, and eliminating the need for external power sources to minimize energy consumption.

A recent breakthrough by a research team led by Associate Professor Takashi Ikuno from Tokyo University of Science has addressed these issues with a groundbreaking solution. Their self-powered artificial synapse is capable of distinguishing colors with remarkable precision, making it particularly suitable for edge computing applications where energy efficiency is crucial.

The device integrates two different dye-sensitized solar cells that respond differently to various wavelengths of light, generating its electricity via solar energy conversion. This self-powering capability makes it an attractive solution for industries such as autonomous vehicles, healthcare, and consumer electronics, where visual recognition capabilities are essential but power consumption is limited.

The researchers demonstrated the potential of their device in a physical reservoir computing framework, recognizing different human movements recorded in red, green, and blue with an impressive 82% accuracy. This achievement has significant implications for various industries, including autonomous vehicles, which could utilize these devices to efficiently recognize traffic lights, road signs, and obstacles.

In healthcare, self-powered artificial synapses could power wearable devices that monitor vital signs like blood oxygen levels with minimal battery drain. For consumer electronics, this technology could lead to smartphones and augmented/virtual reality headsets with dramatically improved battery life while maintaining sophisticated visual recognition capabilities.

The realization of low-power machine vision systems with color discrimination capabilities close to those of the human eye is within reach, thanks to this breakthrough research. The potential applications of self-powered artificial synapses are vast, and their impact will be felt across various industries in the years to come.

Continue Reading

Bioethics

Unlocking Human-AI Relationships: A New Lens Through Attachment Theory

Human-AI interactions are well understood in terms of trust and companionship. However, the role of attachment and experiences in such relationships is not entirely clear. In a new breakthrough, researchers from Waseda University have devised a novel self-report scale and highlighted the concepts of attachment anxiety and avoidance toward AI. Their work is expected to serve as a guideline to further explore human-AI relationships and incorporate ethical considerations in AI design.

Avatar photo

Published

on

By

As humans increasingly engage with artificial intelligence (AI), researchers have sought to understand the intricacies of human-AI relationships. While trust and companionship are well-studied aspects of these interactions, the role of attachment and emotional experiences remains unclear. A groundbreaking study by Waseda University researchers has shed new light on this topic, introducing a novel self-report scale to measure attachment-related tendencies toward AI.

In an effort to better grasp human-AI relationships, researchers Fan Yang and Atsushi Oshio from the Faculty of Letters, Arts and Sciences, conducted two pilot studies and one formal study. Their findings, published in Current Psychology, reveal that people form emotional bonds with AI, similar to those experienced in human interpersonal connections.

The researchers developed the Experiences in Human-AI Relationships Scale (EHARS), a self-report measure designed to assess attachment-related tendencies toward AI. The results showed that nearly 75% of participants turned to AI for advice, while about 39% perceived AI as a constant, dependable presence.

Interestingly, the study differentiated two dimensions of human attachment to AI: anxiety and avoidance. Individuals with high attachment anxiety toward AI need emotional reassurance and harbor a fear of receiving inadequate responses from AI. Conversely, those with high attachment avoidance toward AI are characterized by discomfort with closeness and a consequent preference for emotional distance from AI.

The implications of this research extend beyond the realm of human-AI relationships. The proposed EHARS can be used by developers or psychologists to assess how people relate to AI emotionally and adjust interaction strategies accordingly. This could lead to more empathetic responses in therapy apps, loneliness interventions, or caregiver robots.

Moreover, the findings suggest a need for transparency in AI systems that simulate emotional relationships, such as romantic AI apps or caregiver robots, to prevent emotional overdependence or manipulation.

As AI becomes increasingly integrated into everyday life, people may begin to seek not only information but also emotional support from AI systems. The research highlights the psychological dynamics behind these interactions and offers tools to assess emotional tendencies toward AI, promoting a better understanding of how humans connect with technology on a societal level. This, in turn, can guide policy and design practices that prioritize psychological well-being.

Continue Reading

Trending