Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Alzheimer's Research

Detecting the Invisible: A New Method for Identifying Nanoplastics in Body Fluids

Microplastics and the much smaller nanoplastics enter the human body in various ways, for example through food or the air we breathe. A large proportion is excreted, but a certain amount remains in organs, blood and other body fluids. Scientists have now been able to develop a method for detecting and quantifying nanoplastics in transparent body fluids and determining their chemical composition.

Avatar photo

Published

on

The presence of microplastics and even smaller nanoplastics in our bodies is a growing concern. These tiny particles can enter our system through food, air, or other means, but fortunately, most of them are excreted by our bodies. However, some amount remains lodged in organs, blood, and other bodily fluids. In an effort to understand the impact of nanoplastics on human health, particularly in ophthalmology, a team at Graz University of Technology (TU Graz) has been working on a project called Nano-VISION.

The research team, led by Harald Fitzek from the Institute of Electron Microscopy and Nanoanalysis, in collaboration with an ophthalmologist from Graz and a start-up company named BRAVE Analytics, has successfully developed a method for detecting and quantifying nanoplastics in transparent body fluids. This breakthrough is significant, especially since there have been no studies on intraocular lenses releasing nanoplastics.

The innovative method combines two techniques: optofluidic force induction and Raman spectroscopy. The first technique involves shining a weakly focused laser through the liquid being analyzed, causing particles to accelerate or decelerate based on their size. This allows researchers to determine the concentration of micro- and nanoplastics in the liquid.

What’s new is the addition of Raman spectroscopy, which analyzes the spectrum of the laser light scattered by individual particles in the liquid. Depending on the material composition of these particles, the frequency values are slightly different, revealing their chemical composition. This method works particularly well with organic materials and plastics.

The team at TU Graz has been conducting further investigations into how intraocular lenses yield nanoplastics spontaneously or when exposed to mechanical stress or laser energy. These findings will be crucial for ophthalmic surgeons and lens manufacturers and will be published in a scientific journal.

The implications of this research are far-reaching, not just for the field of ophthalmology but also for industries and our environment. The method developed by this team can be applied to continuously monitor liquid flows in various sectors, from drinking water to waste management.

Alzheimer's

Uncovering the Hidden Defenses Against Alzheimer’s Disease: A Breakthrough Study on Brain Resilience

Scientists at UCSF combined advanced brain-network modeling, genetics, and imaging to reveal how tau protein travels through neural highways and how certain genes either accelerate its toxic journey or shield brain regions from damage. Their extended Network Diffusion Model pinpoints four gene categories that govern vulnerability or resilience, reshaping our view of Alzheimer’s progression and spotlighting fresh therapeutic targets.

Avatar photo

Published

on

Alzheimer’s disease is a complex condition that affects different parts of the brain in various ways. One key factor in the progression of the disease is the misbehavior of tau proteins, which can lead to toxic clumps forming inside neurons and impairing their function. Researchers have long sought to understand why some areas of the brain are more resilient to Alzheimer’s than others, a phenomenon known as selective vulnerability or resilience.

A recent study by researchers at the University of California, San Francisco (UCSF) has made significant strides in this area by combining advanced mathematical modeling with brain imaging and genetics. The study, published in Brain, identified multiple distinct pathways through which risk genes confer vulnerability or resilience to Alzheimer’s disease.

The researchers developed a model called the extended Network Diffusion Model (eNDM), which predicted where tau protein would spread next based on real-world brain connection data from healthy individuals. By applying this model to brain scans of 196 people at various stages of Alzheimer’s, they were able to identify areas that were resistant or vulnerable to the disease.

The study revealed four distinct types of genes: those that boost tau spread along the brain’s wiring (Network-Aligned Vulnerability), those that promote tau buildup in ways unrelated to connectivity (Network-Independent Vulnerability), those that help protect regions that are otherwise tau hotspots (Network-Aligned Resilience), and those that offer protection outside of the network’s usual path (Network-Independent Resilience).

These findings have significant implications for understanding Alzheimer’s disease and developing potential intervention targets. The study’s lead author, Ashish Raj, PhD, noted that their research offers a “hopeful map forward” in understanding and eventually stopping Alzheimer’s disease.

The researchers also highlighted the importance of considering the different biological functions of genes that respond independently of the network versus those that respond in concert with it. This nuanced approach could lead to more effective strategies for identifying potential intervention targets and developing treatments for Alzheimer’s disease.

Continue Reading

Alternative Medicine

A Pain-Free Patch Revolutionizes Cancer Detection with Nanoneedles

A new nanotechnology breakthrough may soon eliminate the need for painful biopsies. Scientists have developed a patch filled with nanoneedles thinner than a human hair that can painlessly extract molecular data from tissues without removing or damaging them. This enables real-time disease monitoring, particularly for conditions like brain cancer and Alzheimer s, and could radically change how doctors diagnose and track disease. The patch works quickly, integrates with common medical tools, and provides results using AI, opening doors to personalized medicine and better surgical decisions.

Avatar photo

Published

on

The article has been rewritten to improve clarity, structure, and style, making it understandable to the general public:

A groundbreaking patch, containing tens of millions of microscopic nanoneedles, could soon replace traditional biopsies. This innovative technology offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies each year to detect and monitor diseases like cancer and Alzheimer’s.

Biopsies are among the most common diagnostic procedures worldwide, performed millions of times every year. However, they can be invasive, cause pain and complications, and deter patients from seeking early diagnosis or follow-up tests. Traditional biopsies also remove small pieces of tissue, limiting how often and how comprehensively doctors can analyze diseased organs like the brain.

Now, scientists at King’s College London have developed a nanoneedle patch that painlessly collects molecular information from tissues without removing or damaging them. This breakthrough could allow healthcare teams to monitor disease in real-time and perform multiple, repeatable tests from the same area – something impossible with standard biopsies.

The nanoneedles are incredibly thin, measuring 1,000 times thinner than a human hair, and cause no pain or damage. For many patients, this means earlier diagnosis and more regular monitoring, transforming how diseases are tracked and treated.

Dr. Ciro Chiappini, who led the research published in Nature Nanotechnology, said: “We have been working on nanoneedles for twelve years, but this is our most exciting development yet. It opens a world of possibilities for people with brain cancer, Alzheimer’s, and for advancing personalized medicine.”

The patch is covered in tens of millions of nanoneedles that extract molecular “fingerprints” – including lipids, proteins, and mRNAs – from cells without harming the tissue. The tissue imprint is then analyzed using mass spectrometry and artificial intelligence, giving healthcare teams detailed insights into whether a tumor is present, how it’s responding to treatment, and how disease is progressing at the cellular level.

This technology could be used during brain surgery to help surgeons make faster, more precise decisions. For example, by applying the patch to a suspicious area, results could be obtained within 20 minutes and guide real-time decisions about removing cancerous tissue.

Made using the same manufacturing techniques as computer chips, the nanoneedles can be integrated into common medical devices such as bandages, endoscopes, and contact lenses. Dr. Chiappini added: “This could be the beginning of the end for painful biopsies. Our technology opens up new ways to diagnose and monitor disease safely and painlessly – helping doctors and patients make better, faster decisions.”

Continue Reading

Alzheimer's

Epilepsy Strikes with Surprising Frequency in Frontotemporal Dementia Patients

According to a recent study, in patients with frontotemporal dementia (FTD), epileptic seizures are significantly more common than previously known. The discovery deepens understanding of the symptoms of this memory disorder and emphasises the importance of taking epileptic seizures into account in the treatment and monitoring of patients.

Avatar photo

Published

on

Epileptic seizures are more common in patients with frontotemporal dementia (FTD) than previously known, according to a recent study. This discovery sheds new light on the symptoms of this memory disorder and emphasizes the importance of considering epileptic seizures in treatment and monitoring patients.

The research project, led by Neurocenter Finland, analyzed data from 12,490 medical records at the University Hospitals of Kuopio and Oulu between 2010-2021. The study identified 245 patients with FTD and found that epilepsy was significantly more common among them than those with Alzheimer’s disease or healthy controls.

“Our results show that epilepsy is considerably more common among those with FTD than those with Alzheimer’s disease or in healthy controls,” says Doctoral Researcher Annemari Kilpeläinen, the first author of the research article and a medical specialist in neurology. “It is noteworthy that epilepsy occurred in some patients with FTD already ten years before their dementia diagnosis, and it was more common in all the examined stages of the disease than previous international studies have reported.”

The prevalence of epilepsy increased over time in patients with FTD, reaching approximately 11% five years after the diagnosis. In addition to diagnosing epilepsy, medications used for epilepsy were more common among patients with FTD, further strengthening the reliability of the results.

Diagnosing epilepsy in patients with FTD can be challenging due to the resemblance between the symptoms of the disease and epileptic seizures. However, untreated epilepsy can significantly worsen patients’ condition. Identifying epilepsy is essential because its treatment can improve patients’ functional capacity and quality of life.

“Knowledge about the association between epilepsy and FTD raises new research questions: do these diseases share some pathophysiological mechanisms and could some FTD symptoms be caused by alterations in the specific electrical systems of the brain?” asks Associate Professor Eino Solje, the principal investigator of the project.

The recently published study is part of an extensive project that combines real-life patient data with different kinds of unique registers. The project involves a strong cooperation between the University of Oulu and the University of Eastern Finland as well as different fields of science, including between researchers in medicine and law.

Continue Reading

Trending