Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Communications

Enhancing Trust in Knowledge Work: How AI Can Boost Performance and Confidence

In a new study, researchers explored how artificial intelligence (AI) can enhance performance and trust in knowledge work environments. They found that when AI systems provided feedback in real-time, performance and trust increased.

Avatar photo

Published

on

The world of knowledge work has undergone significant changes in recent years, driven primarily by technological advancements. Many workers have transitioned from manual labor to roles that require expertise, problem-solving, and creativity. However, this shift comes with its own set of challenges, particularly when it comes to managing non-routine work, which is inherently uncertain.

A new study published in Computers in Human Behavior has explored how artificial intelligence (AI) can enhance performance and trust in knowledge work environments. The researchers found that when AI systems provided feedback in real-time, performance and trust increased significantly.

The study, led by Carnegie Mellon University’s Tepper School of Business, is part of a special issue on “The Social Bridge: An Interdisciplinary View on Trust in Technology.” The research team sought to determine how the frequency of feedback and the uncertainty of a task interacted to influence workers’ perceptions of an algorithm’s trustworthiness.

In a randomized, controlled experiment, 140 participants performed caregiving tasks in an online, simulated home healthcare environment. The results showed that real-time feedback increased the perceived trustworthiness of performance ratings by boosting workers’ sense of their own work quality and reducing the degree to which they were surprised by their final evaluation.

The study’s findings have broad implications for AI-powered performance management in industries increasingly reliant on digital and algorithmic work environments. According to Anita Williams Woolley, Professor of Organizational Behavior at Carnegie Mellon, “Our findings challenge traditional concerns that AI-driven management fosters distrust and demonstrate a path by which AI complements human work by providing greater transparency and alignment with workers’ expectations.”

The research also highlights the importance of addressing non-routine work challenges through algorithmic management systems. Allen S. Brown, PhD student in Organizational Behavior and Theory at Carnegie Mellon, notes that “Non-routine work has long posed challenges to traditional management strategies, and the development of algorithmic management systems offers an opportunity to begin to address them.”

The study was funded by the AI-CARING Project of the U.S. National Science Foundation, and its findings have significant implications for the future of knowledge work and AI-powered performance management.

Communications

Artificial Intelligence Isn’t Hurting Workers—It Might Be Helping

Despite widespread fears, early research suggests AI might actually be improving some aspects of work life. A major new study examining 20 years of worker data in Germany found no signs that AI exposure is hurting job satisfaction or mental health. In fact, there s evidence that it may be subtly improving physical health especially for workers without college degrees by reducing physically demanding tasks. However, researchers caution that it s still early days.

Avatar photo

Published

on

By

The relationship between artificial intelligence (AI) and worker well-being has been a topic of concern. However, a recent study suggests that AI exposure may not be causing widespread harm to mental health or job satisfaction. In fact, the data indicates that AI might even be linked to modest improvements in physical health, particularly among employees with less than a college degree.

The study, “Artificial Intelligence and the Wellbeing of Workers,” published in Nature: Scientific Reports, analyzed two decades of longitudinal data from the German Socio-Economic Panel. The researchers explored how workers in AI-exposed occupations fared compared to those in less-exposed roles.

“We find little evidence that AI adoption has undermined workers’ well-being on average,” said Professor Luca Stella, one of the study’s authors. “If anything, physical health seems to have slightly improved, likely due to declining job physical intensity and overall job risk in some of the AI-exposed occupations.”

However, the researchers also highlight reasons for caution. The analysis relies primarily on a task-based measure of AI exposure, which may not capture the full effects of AI adoption. Alternative estimates based on self-reported exposure reveal small negative effects on job and life satisfaction.

“We may simply be too early in the AI adoption curve to observe its full effects,” Stella emphasized. “AI’s impact could evolve dramatically as technologies advance, penetrate more sectors, and alter work at a deeper level.”

The study’s key findings include:

1. Modest improvements in physical health among employees with less than a college degree.
2. Little evidence of widespread harm to mental health or job satisfaction.
3. Small negative effects on job and life satisfaction reported by workers with self-reported exposure to AI.

The researchers note that the sample excludes younger workers and only covers the early phases of AI diffusion in Germany. They caution that outcomes may differ in more flexible labor markets or among younger cohorts entering increasingly AI-saturated workplaces.

“This research is an early snapshot, not the final word,” said Professor Osea Giuntella, another author of the study. “As AI adoption accelerates, continued monitoring of its broader impacts on work and health is essential.”

Ultimately, the study suggests that the impact of AI on worker well-being may be more complex than initially thought. While it is too soon to draw definitive conclusions, the research highlights the need for ongoing monitoring and analysis of AI’s effects on the workforce.

Continue Reading

Communications

Breaking Down Language Barriers in Quantum Tech: A Universal Translator for a Quantum Network

Scientists at UBC have devised a chip-based device that acts as a “universal translator” for quantum computers, converting delicate microwave signals to optical ones and back with minimal loss and noise. This innovation preserves crucial quantum entanglement and works both ways, making it a potential backbone for a future quantum internet. By exploiting engineered flaws in silicon and using superconducting components, the device achieves near-perfect signal translation with extremely low power use and it all fits on a chip. If realized, this could transform secure communication, navigation, and even drug discovery.

Avatar photo

Published

on

By

The University of British Columbia (UBC) researchers have proposed a groundbreaking solution to overcome the hurdles in quantum networking. They’ve designed a device that can efficiently convert microwave signals into optical signals and vice versa, which is crucial for transmitting information across cities or continents through fibre optic cables.

This “universal translator” for quantum computers is remarkable because it preserves the delicate entangled connections between distant particles, allowing them to remain connected despite distance. Losing this connection means losing the quantum advantage that enables tasks like creating unbreakable online security and predicting weather with improved accuracy.

The team’s breakthrough lies in tiny engineered flaws, magnetic defects intentionally embedded in silicon to control its properties. When microwave and optical signals are precisely tuned, electrons in these defects convert one signal to the other without absorbing energy, avoiding the instability that plagues other transformation methods.

This device is impressive because it can efficiently run at extremely low power – just millionths of a watt – using superconducting components alongside this specially engineered silicon. The authors have outlined a practical design for mass production, which could lead to widespread adoption in existing communication infrastructure.

While we’re not getting a quantum internet tomorrow, this discovery clears a major roadblock. UBC researchers hope that their approach will change the game by enabling reliable long-distance quantum information transmission between cities. This could pave the way for breakthroughs like unbreakable online security, GPS working indoors, and solving complex problems like designing new medicines or predicting weather with improved accuracy.

The implications of this research are vast, and it’s an exciting time to see how scientists will build upon this discovery to further advance our understanding of quantum technology.

Continue Reading

Communications

Scientists Take a Big Leap Toward the Quantum Internet with New Light Sources

A team of Danish and German scientists has launched a major project to create new technology that could form the foundation of the future quantum internet. They re using a rare element called erbium along with silicon chips like the ones in our phones to produce special particles of light for ultra-secure communication and powerful computing. With cutting-edge tools like lasers and nanotech, the researchers are working to make something that didn t seem possible just a few years ago: light that can both travel long distances and remember information.

Avatar photo

Published

on

By

The article “Scientists just took a big step toward the quantum internet” has been rewritten to improve clarity, structure, and style, making it accessible to a general audience. The core ideas remain the same, but the language is simpler and more engaging.

Scientists Take a Big Leap Toward the Quantum Internet with New Light Sources

A groundbreaking research collaboration between Denmark and Germany aims to revolutionize quantum technology by developing new light sources that can connect devices through optical networks. The project, called EQUAL (Erbium-based silicon quantum light sources), has received 40 million Danish crowns in funding from the Innovation Fund Denmark.

The quest for a quantum internet is not just about creating faster computers; it’s also about enabling unbreakable encryption and entirely new types of computing. However, this requires quantum light sources that don’t exist today. The EQUAL project aims to change that by integrating nanophotonic chips with unique technologies in materials, nanoelectromechanics, nanolithography, and quantum systems.

“It is a really difficult task, but we have also set a really strong team,” says Søren Stobbe, the project coordinator at the Technical University of Denmark (DTU). “One of the toughest goals is to integrate quantum light sources with quantum memories. This seemed unrealistic just a few years ago, but now we see a path forward.”

The EQUAL team has made significant progress in developing new nanophotonic technology that can enhance the interaction between erbium and light. Erbium is the only viable option for creating viable quantum light sources, but it interacts too weakly with light. The project requires not only advanced nanophotonics but also quantum technology, integrated photonics with extremely low power consumption, and new nanofabrication methods – all of which hold great potential.

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) will help develop new sources of quantum light using silicon, the same material found in everyday electronics. These light sources will work at the same wavelengths used in fiber-optic communication, making them ideal for future quantum technologies like secure communication and powerful computing.

The EQUAL team has access to further technological input from partnering institutions: quantum networks from Humboldt University in Berlin, nanotechnology from Beamfox Technologies ApS, and integrated photonics from Lizard Photonics ApS. The project’s principal investigator, Dr. Yonder Berencén from the Institute of Ion Beam Physics and Materials Research at HZDR, explains that they intend to use advanced ion beam techniques to implant erbium atoms into tiny silicon structures and study how using ultra-pure silicon can improve their performance. This research will lay the foundation for building quantum devices that can be integrated into today’s technology.

The EQUAL project has just begun in May 2025 and will run for five years, aiming to make significant progress toward creating a viable quantum internet. The researchers are excited about the potential breakthroughs and the impact it could have on society.

Continue Reading

Trending