Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Behavior

Firefighters’ Genetic Mutations Linked to Toxin Exposure in Brain Tumors

In a study comparing the glioma tumors of firefighters and non-fighters, researchers found a mutational signature tied to exposure to haloalkanes, which are used in flame retardants, fire extinguishers, and pesticides.

Avatar photo

Published

on

The study of occupational and environmental exposures has shed light on the increased risk of cancer for specific groups, including firefighters. A recent investigation by researchers at Mass General Brigham delves into a lesser-studied cancer in firefighters: gliomas – tumors that form in the brain or spinal cord. Using tumor samples from the University of California, San Francisco Adult Glioma Study, the researchers identified a genetic mutational signature linked to exposure to haloalkene, a substance found in flame retardants, fire extinguishers, and pesticides.

The findings, published in CANCER, a peer-reviewed journal of the American Cancer Society, are significant as they inform public health intervention strategies. According to senior author Elizabeth B. Claus, MD, PhD, of Brigham and Women’s Hospital, this discovery can help prevent gliomas by pinpointing avoidable occupational hazards. Claus and her colleagues compared genetic samples from tumors of 17 firefighters with those of 18 non-firefighters, revealing mutations tied to the known “mutational signature” in many firefighter samples – particularly among those who had spent more years firefighting.

The study also highlighted the highest signal of the signature among people exposed to haloalkenes through other occupations, such as painting or being a mechanic. Claus expressed hope for further examination of this association in larger samples that include both firefighters and others exposed to haloalkanes. The online glioma registry developed by the researchers continues to study risk factors and treatments for persons with glioma.

Disclosures: Elizabeth B. Claus reports advisory board fees from Servier Pharmaceuticals outside the submitted work. Additional author disclosures can be found in the paper.

Behavior

Unraveling the Mind: How a Scent Can Change Your Decisions

Mice taught to link smells with tastes, and later fear, revealed how the amygdala teams up with cortical regions to let the brain draw powerful indirect connections. Disabling this circuit erased the links, hinting that similar pathways in humans could underlie disorders like PTSD and psychosis, and might be tuned with future brain-modulation therapies.

Avatar photo

Published

on

By

The human brain is a masterful machine that makes decisions based on associations between stimuli in our environment. But did you know that these decisions can also be influenced by indirect associations between seemingly unrelated events? A recent study by the Cellular Mechanisms in Physiological and Pathological Behavior Research Group at the Hospital del Mar Research Institute has shed new light on this process, revealing how a specific scent can alter our mind’s decision-making processes.

The research team, led by PhD student José Antonio González Parra and supervised by Dr. Arnau Busquets, conducted experiments with mice to understand the mechanisms behind indirect associations between different stimuli. They trained the mice to associate two distinct smells – banana and almond – with sweet and salty tastes respectively. Later, a negative stimulus was linked to the smell of banana, causing the mice to reject the sweet taste associated with it.

The researchers used genetic techniques to observe which brain areas were activated throughout this process. They found that the amygdala, a region linked to responses such as fear and anxiety, played a crucial role in encoding and consolidating these associations. Other brain areas also interacted with the amygdala, forming a brain circuit that controls indirect associations between stimuli.

Dr. Busquets explained that if amygdala activity was inhibited while the mice were exposed to the stimuli, they were unable to form these indirect associations. This finding has significant implications for treating mental disorders linked to amygdala activity, such as PTSD and psychosis.

The researchers believe that the brain circuits involved in decision-making processes in humans are similar to those in mice. Therefore, understanding these complex cognitive processes can help us design therapeutic strategies for humans, including brain stimulation or modulation of activity in specific areas.

In conclusion, this study has revealed how a scent can change our mind’s decisions by altering indirect associations between stimuli. By exploring the neural mechanisms behind this process, we may be able to develop innovative treatments for mental disorders that affect millions of people worldwide.

Continue Reading

Autism

Unpacking the Gene That Hijacks Fear: How PTEN Rewires the Brain’s Anxiety Circuit

Deleting a gene called PTEN in certain brain cells disrupts the brain’s fear circuitry and triggers anxiety-like behavior in mice — key traits seen in autism. Researchers mapped how this genetic tweak throws off the brain’s delicate balance of excitation and inhibition in the amygdala, offering deep insights into how one gene can drive specific ASD symptoms.

Avatar photo

Published

on

The gene PTEN has emerged as one of the most significant autism risk genes. Variations in this gene are found in a significant proportion of people with autism who also exhibit brain overgrowth. Researchers at the Max Planck Florida Institute for Neuroscience have discovered how loss of this gene rewires circuits and alters behavior, leading to increased fear learning and anxiety in mice – core traits seen in ASD.

PTEN has been linked to alterations in the function of inhibitory neurons in the development of ASD. The researchers focused on the changes in the central lateral amygdala driven by loss of PTEN in a critical neuronal population – somatostatin-expressing inhibitory neurons. They found that deleting PTEN specifically in these interneurons disrupted local inhibitory connectivity in the amygdala by roughly 50% and reduced the strength of the remaining inhibitory connections.

This diminished connectivity between inhibitory connections within the amygdala was contrasted by an increase in the strength of excitatory inputs received from the basolateral amygdala, a nearby brain region that relays emotionally-relevant sensory information to the amygdala. Behavioral analysis demonstrated that this imbalance in neural signaling was linked to heightened anxiety and increased fear learning, but not alterations in social behavior or repetitive behavior traits commonly observed in ASD.

The results confirm that PTEN loss in this specific cell type is sufficient to induce specific ASD-like behaviors and provide one of the most detailed maps to date of how local inhibitory networks in the amygdala are affected by genetic variations associated with neurological disorders. Importantly, the altered circuitry did not affect all ASD-relevant behaviors – social interactions remained largely intact – suggesting that PTEN-related anxiety and fear behaviors may stem from specific microcircuit changes.

By teasing out the local circuitry underlying specific traits, researchers hope to differentiate the roles of specific microcircuits within the umbrella of neurological disorders, which may one day help in developing targeted therapeutics for specific cognitive and behavioral characteristics. In future studies, they plan to evaluate these circuits in different genetic models to determine if these microcircuit alterations are convergent changes that underlie heightened fear and anxiety expression across diverse genetic profiles.

Continue Reading

Amyotrophic Lateral Sclerosis

“Reviving Memories: Gene Therapy Shows Promise in Reversing Alzheimer’s Disease in Mice”

UC San Diego scientists have created a gene therapy that goes beyond masking Alzheimer’s symptoms—it may actually restore brain function. In mice, the treatment protected memory and altered diseased brain cells to behave more like healthy ones.

Avatar photo

Published

on

The field of neuroscience has made significant strides in understanding the complex mechanisms behind Alzheimer’s disease. A recent study by researchers at the University of California San Diego School of Medicine offers a glimmer of hope for those affected by this debilitating condition. By developing a gene therapy that targets the root cause of Alzheimer’s, these scientists may have found a way to not only slow down but also potentially reverse memory loss.

Alzheimer’s disease is a progressive disorder that affects millions worldwide. It occurs when abnormal proteins build up in the brain, leading to the death of brain cells and declines in cognitive function and memory. While existing treatments can manage symptoms, they do little to halt or reverse the progression of the disease. This new gene therapy, however, promises to address the underlying issue by influencing the behavior of brain cells themselves.

The researchers conducted their study using mice as models for human Alzheimer’s patients. They found that delivering the treatment at the symptomatic stage of the disease preserved hippocampal-dependent memory – a critical aspect of cognitive function often impaired in Alzheimer’s patients. Moreover, the treated mice had a similar pattern of gene expression compared to healthy mice of the same age, suggesting that the treatment has the potential to alter diseased cells and restore them to a healthier state.

While further studies are required to translate these findings into human clinical trials, this gene therapy offers a unique and promising approach to mitigating cognitive decline and promoting brain health. As researchers continue to refine and develop this technology, we may soon see a future where Alzheimer’s patients can experience a significant reversal of memory loss – a truly remarkable prospect that could revolutionize the way we understand and treat this devastating disease.

Continue Reading

Trending