Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Agriculture and Food

“Future-Proofing” Crops: A Ray of Hope in a Changing Climate

A professor of crop sciences and of plant biology describes research efforts to ‘future-proof’ the crops that are essential to feeding a hungry world in a changing climate. Long, who has spent decades studying the process of photosynthesis and finding ways to improve it, provides an overview of key scientific findings that offer a ray of hope.

Avatar photo

Published

on

As the world grapples with the challenges of a changing climate, a renowned expert in crop sciences is sounding the alarm about the need for urgent and consistent effort to “future-proof” our crops. Stephen Long, a professor at the University of Illinois Urbana-Champaign, has spent decades studying photosynthesis and finding ways to improve it. In a review published in The Philosophical Transactions of the Royal Society B, he provides an overview of key scientific findings that offer a glimmer of hope.

Long highlights the devastating effects of climate change on crop growth, development, and reproductive viability. Higher temperatures, more frequent and longer droughts, catastrophic rainfall events, and rising atmospheric carbon dioxide levels are all taking a toll on plant health. While some regions may benefit from certain aspects of climate change, many others will suffer potentially catastrophic declines without prolonged intervention.

By 2050-60, crops will face a significantly different environment than today, with atmospheric CO2 projected to reach 600 parts per million. Extreme heat, droughts, floods, and other climate-related events are already disrupting agricultural systems. Projected temperature extremes and climate instability will further reduce crop yields, exacerbating starvation, political unrest, and mass migration.

However, Long notes that it may be possible to alter crops in ways that allow them to persist and even thrive despite the challenges. Researchers are evaluating the heat-, drought-, and flood-tolerance of different varieties of specific crop plants, identifying those with potentially beneficial attributes. Discovering the genetic traits that confer these benefits will enable scientists to develop crops through plant breeding and/or genetic engineering that can better withstand extremes.

Long’s research has already yielded promising results, such as finding rice varieties that can survive up to two weeks of submergence during periods of intense flooding, while other varieties are more heat-tolerant. Plants must contend with the increased drying capacity of the atmosphere as temperatures rise, drawing moisture out of plant leaves through tiny pores called stomata. This reduces plant water-use efficiency, straining already scarce water resources.

In laboratory and field experiments, researchers found that increasing the expression of a gene for a sensor protein in plants reduced water loss through stomata without interfering with photosynthesis. The result was a 15% improvement in leaf-level water-use efficiency in field-grown tobacco and a 30% decrease in whole plant water use.

Researchers have also found ways to reduce the density of stomata on rice and wheat leaves, improving water-use efficiency by 15-20% without decreasing yields. High carbon dioxide levels can alter plant physiology, sometimes beneficially boosting photosynthesis but also detrimentally changing metabolic control.

Long points to remarkable progress made in research on maize, nearly 80% of which is used in ethanol production and to feed animals, not humans. Between 1980 and 2024, U.S. maize yields doubled while sorghum improved just 12%. The success in maize is the result of massive investments from large multinational companies.

However, without similar investment on the public domain side of the equation, Long writes that it’s hard to see how opportunities for future-proofing our crops can be implemented at the scale necessary. Without urgent and consistent effort, we risk losing valuable crop varieties and facing catastrophic declines in food production.

The stakes are high, but so is the potential reward. As Long emphasizes, investing in research and development of climate-resilient crops can help ensure a more food-secure future for generations to come.

Agriculture and Food

The Unexpected Sinking Speed of Ocean Particles: A Surprising Twist on Marine Snow

In a twist on conventional wisdom, researchers have discovered that in ocean-like fluids with changing density, tiny porous particles can sink faster than larger ones, thanks to how they absorb salt. Using clever lab experiments with 3D-printed agar shapes in a stratified water column, scientists demonstrated that porosity and particle shape are major factors in determining sinking speed. This finding could revolutionize how we understand carbon cycling, microplastic behavior, and even strategies for ocean-based carbon capture.

Avatar photo

Published

on

The deep ocean can be a breathtaking sight to behold, resembling a real-life snow globe. As organic particles from plant and animal matter on the surface sink downward, they combine with dust and other material to create “marine snow,” a crucial component in cycling carbon and nutrients through the world’s oceans. However, researchers from Brown University and the University of North Carolina at Chapel Hill have recently uncovered surprising new insights into how these particles settle in the ocean.

In a study published in Proceedings of the National Academy of Sciences, they found that the speed at which particles sink is not solely determined by resistive drag forces from the fluid, but also by their ability to absorb salt relative to their volume. This discovery challenges conventional wisdom and could have significant implications for understanding natural carbon cycling and even engineering ways of speeding up carbon capture.

“It basically means that smaller particles can sink faster than bigger ones,” said Robert Hunt, a postdoctoral researcher in Brown’s School of Engineering who led the work. “That’s exactly the opposite of what you’d expect in a fluid with uniform density.”

The researchers created a linearly stratified body of water to test their model and found that particles with high porosity tended to sink faster than those with lower porosity, regardless of their size. This means that elongated particles actually sink faster than spherical ones of the same volume.

“We ended up with a pretty simple formula where you can plug in estimates for different parameters – the size of the particles or speed at which the liquid density changes – and get reasonable estimates of the sinking speed,” said Daniel Harris, an associate professor of engineering at Brown who oversaw the work. “There’s value in having predictive power that’s readily accessible.”

The study grew out of prior work by Hunt and Harris investigating neutrally buoyant particles, and their new findings have the potential to revolutionize our understanding of how particles settle in complex ecological settings.

“We’re not trying to replicate full oceanic conditions,” Harris said. “The approach in our lab is to boil things down to their simplest form and think about the fundamental physics involved in these complex phenomena. Then we can work back and forth with people measuring these things in the field to understand where these fundamentals are relevant.”

Harris hopes to connect with oceanographers and climate scientists to see what insights these new findings might provide, and other co-authors of the research were Roberto Camassa and Richard McLaughlin from UNC Chapel Hill. The research was funded by the National Science Foundation and the Office of Naval Research.

Continue Reading

Agriculture and Food

The Hidden Pause: How Bumble Bee Queens Keep Their Colonies Alive

Bumblebee queens don t work nonstop. UC Riverside scientists discovered that queens take strategic reproductive breaks early in colony formation likely to conserve energy and increase the chance of survival. These pauses aren t due to stress but are a built-in response to brood development stages. The study shows queen behavior is far more flexible and dynamic than previously thought, potentially offering new insights into how to protect declining bee populations.

Avatar photo

Published

on

The world of insects is often shrouded in mystery, but recent research has uncovered a fascinating phenomenon that could hold the key to understanding the survival strategies of bumble bee colonies. A new study from the University of California, Riverside reveals that even the mighty queens, sole founders of their colonies, take regular breaks from reproduction – likely to avoid burning out before their first workers arrive.

In the early stages of colony building, bumblebee queens shoulder the entire workload. They forage for food, incubate their developing brood by heating them with their wing muscles, maintain the nest, and lay eggs. This high-stakes balancing act is crucial, as without the queen, the colony fails. Researchers noticed an intriguing rhythm – a burst of egg-laying followed by several days of apparent inactivity.

The study’s lead author, Blanca Peto, observed this pattern early on while taking daily photos of the nests. “I saw these pauses just by taking daily photos of the nests,” she said. “It wasn’t something I expected. I wanted to know what was happening during those breaks.”

To find out what triggered the pauses, Peto monitored more than 100 queens over a period of 45 days in a controlled insectary. She documented each queen’s nesting activity, closely examining their distinctive clutches – clusters of eggs laid in wax-lined “cups” embedded in pollen mounds. Across the population, a pattern emerged: Many queens paused reproduction for several days, typically after a stretch of intense egg-laying.

The timing of these pauses appeared to align with the developmental stages of the existing brood. To test this, Peto experimentally added broods at different stages – young larvae, older larvae, and pupae – into nests during a queen’s natural pause. The presence of pupae, which are nearly mature bees, prompted queens to resume egg-laying within about 1.5 days. In contrast, without added broods, the pauses stretched to an average of 12.5 days.

This suggests that queens respond to cues from their developing offspring and time their reproductive efforts accordingly. “There’s something about the presence of pupae that signals it’s safe or necessary to start producing again,” Peto said. “It’s a dynamic process, not constant output like we once assumed.”

Eusocial insects, including bumble bees, feature overlapping generations, cooperative brood care, and a division of labor. Conventional thinking about these types of insects is that they’re producing young across all stages of development. However, Peto said this study challenges that conventional thinking about bumble bees, whose reproductive behavior is more nuanced and intermittent.

“What this study showed is that the queen’s reproductive behavior is much more flexible than we thought,” Peto said. “This matters because those early days are incredibly vulnerable. If a queen pushes too hard too fast, the whole colony might not survive.”

The study focused on a single species native to the eastern U.S., but the implications could extend to other bumble bee species or even other eusocial insects. Queens in other species may also pace themselves during solo nest-founding stages. If so, this built-in rhythm could be an evolutionary trait that helps queens survive long enough to raise a workforce.

Multiple bumblebee populations in North America are declining, largely due to habitat loss, pesticide exposure, and climate stress. Understanding the biological needs of queens, the literal foundation of each colony, can help conservationists better protect them.

“Even in a lab where everything is stable and they don’t have to forage, queens still pause,” Peto said. “It tells us this isn’t just a response to stress but something fundamental. They’re managing their energy in a smart way.”

This kind of insight is possible thanks to patient, hands-on observation, something Peto prioritized in her first research project as a graduate student.

“Without queens, there’s no colony. And without colonies, we lose essential pollinators,” Peto said. “These breaks may be the very reason colonies succeed.”

Continue Reading

Agriculture and Food

Unlocking Nature’s Potential: Scientists Discover Key Molecule to Supercharge Plant Growth

Scientists have discovered that a molecule known for defending animal immune systems called itaconate also plays a powerful role in plants. Researchers showed that itaconate not only exists in plant cells but actively stimulates growth, such as making corn seedlings grow taller. This surprising crossover between plant and animal biology may unlock new, natural ways to boost agriculture and even improve human health.

Avatar photo

Published

on

The article “Scientists find immune molecule that supercharges plant growth” has been rewritten to provide clarity, structure, and style while maintaining its core ideas. The rewritten version is as follows:

Unlocking Nature’s Potential: Scientists Discover Key Molecule to Supercharge Plant Growth

For years, researchers have known about a molecule called itaconate that plays a vital role in the human immune system. However, its presence and functions in plants remained largely unexplored – until now. Biologists at the University of California San Diego have conducted the first comprehensive study on itaconate’s functions in plants, revealing its significant role in stimulating plant growth.

“We found that itaconate is made in plants, particularly in growing cells,” said Jazz Dickinson, a senior author of the study and an assistant professor in the Department of Cell and Developmental Biology. “Watering maize (corn) plants with itaconate made seedlings grow taller, which was exciting and encouraged us to investigate this metabolite further and understand how it interacts with plant proteins.”

The researchers used chemical imaging and measurement techniques to confirm that plants produce itaconate. They also discovered that itaconate plays multiple key roles in plant physiology, including involvement in primary metabolism and oxygen-related stress response.

Optimizing the natural benefits of itaconate could be crucial for safely maximizing crop growth to support growing global populations. “This discovery could lead to nature-inspired solutions to improve the growth of crops, like corn,” said Dickinson. “We also hope that developing a better understanding of the connections between plant and animal biology will reveal new insights that can help both plant and human health.”

The study, supported in part by funding from the National Science Foundation and the National Institutes of Health, was published in the journal Science Advances on June 6, 2025. The findings have exciting implications for improving crop growth using nature-inspired solutions, while also offering fresh information for understanding the molecule’s role in human development and growth.

Continue Reading

Trending