Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Biotechnology and Bioengineering

Gut Microbes Unleash Cancer-Fighting Bile Acids with Anti-Androgen Properties

Bacteria naturally present in the human intestine (known as the gut microbiota) can transform cholesterol-derived bile acids into powerful metabolites that strengthen anti-cancer immunity by blocking androgen signaling, according to a preclinical study.

Avatar photo

Published

on

Gut bacteria have long been known to play a crucial role in our overall health and well-being. These tiny microorganisms reside in our intestines and are responsible for breaking down food, regulating our metabolism, and even influencing our mood. But did you know that these gut microbes can also produce powerful cancer-fighting molecules? A recent study has made this astonishing discovery, and it could potentially revolutionize the way we approach cancer treatment.

Researchers at Weill Cornell Medicine have found that certain types of bacteria in the gut can transform cholesterol-derived bile acids into potent anti-cancer agents. These modified bile acids are capable of blocking the activity of a molecule called the androgen receptor, which plays a crucial role in regulating cell growth and development. By inhibiting this receptor, these cancer-fighting molecules can help prevent the spread of tumors and even trigger their destruction.

The study was led by Dr. Chun-Jun Guo, an associate professor of immunology at Weill Cornell Medicine, who said that he was “very surprised” by the findings. The researchers tested over 100 different bile acid molecules modified by gut bacteria and discovered three specific compounds that were capable of blocking the androgen receptor.

When these modified bile acids were administered to mice with bladder cancer, they were found to induce a potent anti-tumor response. Further analysis revealed that the bile acids specifically boosted the activity of T cells, the immune cells best equipped to kill cancer cells.

The researchers believe that this discovery could lead to new approaches for treating various types of cancers, including breast, prostate, and lung cancer. They suggest introducing targeted gut microbes to patients before therapy or directly administering the anti-cancer bile acids as part of treatment.

However, important questions remain unanswered. How might diet influence microbiota composition and affect the production of these beneficial molecules? What physiological effects might these modified bile acids have in healthy individuals?

The researchers are now focused on precisely controlling the synthesis and release of these beneficial molecules using advanced techniques to genetically engineer gut commensal bacteria. They aim to understand the broader physiological impact initiated by these androgen-blocking, microbiota-derived bile acids.

This breakthrough has opened up exciting new possibilities for cancer treatment, and it highlights the profound partnership between the human host and its gut microbiota. By integrating microbial activity into the design of future therapies, researchers may be able to unlock new ways of harnessing the power of our gut microbes to promote overall health and well-being.

Biotechnology

Breaking Ground: Ultrasound Revolutionizes Hydrogel Manufacturing

Researchers have developed a new way to create hydrogels using ultrasound, eliminating the need for toxic chemical initiators. This breakthrough offers a faster, cleaner and more sustainable approach to hydrogel fabrication, and produces hydrogels that are stronger, more flexible and highly resistant to freezing and dehydration. The new method also promises to facilitate advances in tissue engineering, bioadhesives and 3D bioprinting.

Avatar photo

Published

on

The world of hydrogel manufacturing has just gotten a whole lot greener. Researchers at McGill University, in collaboration with Polytechnique Montréal, have pioneered a groundbreaking method to create hydrogels using ultrasound, eliminating the need for toxic chemical initiators. This innovation promises a faster, cleaner, and more sustainable approach to hydrogel fabrication, producing materials that are stronger, more flexible, and highly resistant to freezing and dehydration.

Hydrogels, composed of polymers that can absorb and retain large amounts of water, have numerous applications in wound dressings, drug delivery, tissue engineering, soft robotics, and more. Traditional hydrogel manufacturing relies on chemical initiators, some of which can be hazardous, particularly in medical applications. These chemicals trigger chemical chain reactions, but the McGill research team has developed an alternative method using ultrasound.

When applied to a liquid precursor, sound waves create microscopic bubbles that collapse with immense energy, triggering gel formation within minutes. This ultrasound-driven technique is dubbed “sonogel.” According to Mechanical Engineering Professor Jianyu Li, who led the research team, the problem they aimed to solve was the reliance on toxic chemical initiators.

“Our method eliminates these substances, making the process safer for the body and better for the environment,” said Li. With sonogel, gel formation occurs in just five minutes, compared to hours or even overnight under UV light. This speed and efficiency have significant implications for biomedical applications.

One of the most exciting possibilities for this technology is in non-invasive medical treatments. Because ultrasound waves can penetrate deep into tissues, this method could enable in-body hydrogel formation without surgery. Imagine injecting a liquid precursor and using ultrasound to solidify it precisely where needed – this could be a game-changer for treating tissue damage and regenerative medicine.

Further refinement of this technique also opens the door to ultrasound-based 3D bioprinting. Instead of relying on light or heat, researchers could use sound waves to precisely “print” hydrogel structures. By leveraging high-intensity focused ultrasound, researchers can shape and build hydrogels with remarkable precision.

According to Jean Provost, one of co-authors of the study and assistant professor of engineering physics at Polytechnique Montréal, this breakthrough has significant potential for safer, greener material production. The sonogel method has the potential to revolutionize biomedical applications and unlock new possibilities for non-invasive medical treatments, making it a truly groundbreaking innovation in the field of hydrogel manufacturing.

Continue Reading

Biochemistry

Unraveling Nature’s Secret: How Velvet Worm Slime Could Revolutionize Sustainable Materials Design

A new discovery about the slime ejected by velvet worms could revolutionize sustainable material design. The findings outline how a naturally occurring protein structure, conserved across species from Australia, Singapore and Barbados over nearly 400 million years of evolution, enables the slime’s transformation from liquid to fiber and back again. It’s a discovery that could inspire next-generation recyclable bioplastics.

Avatar photo

Published

on

The discovery of the remarkable properties of velvet worm slime has sent shockwaves through the scientific community, offering new hope for sustainable material design. Researchers from McGill University have made a groundbreaking find that could lead to the development of next-generation recyclable bioplastics.

Velvet worms, small caterpillar-like creatures found in humid forests of the southern hemisphere, possess an extraordinary ability – their slime can transform from liquid to fibre and back again. This remarkable property has puzzled scientists for centuries, but a team led by Matthew Harrington, a chemistry professor and Canada Research Chair in green chemistry, has finally decoded the molecular structure behind this phenomenon.

Using protein sequencing and AI-driven structure prediction (AlphaFold), the researchers identified previously unknown proteins in the slime that function similarly to cell receptors in the immune system. These receptor proteins appear to link large structural proteins during fibre formation, enabling the slime’s remarkable reversibility.

The implications of this discovery are profound. Traditional plastics and synthetic fibres require energy-intensive processes to manufacture and recycle, often involving heat or chemical treatments. In contrast, the velvet worm uses simple mechanical forces – pulling and stretching – to generate strong, durable fibres from biorenewable precursors, which can later be dissolved and reused without harmful byproducts.

While a plastic bottle that dissolves in water may seem like an impractical solution, Harrington believes that adjusting the chemistry of this binding mechanism could overcome this limitation. The team’s next challenge will be to experimentally verify the binding interactions and explore whether the principle can be adapted for engineered materials.

The study was co-authored by researchers from McGill University and Nanyang Technological University (NTU) in Singapore, highlighting the importance of international collaboration in addressing pressing global challenges.

As Harrington aptly puts it, “Nature has already figured out a way to make materials that are both strong and recyclable. By decoding the molecular structure of velvet worm slime, we’re now one step closer to replicating that efficiency for the materials we use every day.”

Continue Reading

Bacteria

“Unlocking TB Diagnosis: New Molecular Label Could Lead to Simpler, Faster Tests”

Chemists found a way to identify a complex sugar molecule in the cell walls of Mycobacterium tuberculosis, the world’s deadliest pathogen. This labeling could lead to simpler, faster TB tests.

Avatar photo

Published

on

The world’s deadliest infectious disease, tuberculosis (TB), claims over 1 million lives annually. Despite advancements in diagnosis and treatment, TB remains a significant challenge, particularly in developing nations where access to chest X-rays and molecular diagnostics is limited. Current diagnostic methods often have high false negative rates and require extensive sample preparation, delaying diagnosis.

MIT chemists have developed a breakthrough approach using an organic molecule that reacts with specific sulfur-containing sugars found only in three bacterial species, including Mycobacterium tuberculosis (Mtb), the microbe responsible for TB. By labeling a glycan called ManLAM using this small-molecule tag, researchers can now visualize where it is located within the bacterial cell wall and study what happens to it throughout the first few days of tuberculosis infection.

The research team led by Laura Kiessling, Novartis Professor of Chemistry at MIT, aims to use this approach to develop a diagnostic that could detect TB-associated glycans in culture or urine samples. This would provide a cheaper and faster alternative to existing diagnostics, making it more accessible to developing nations where TB rates are high.

Using their small-molecule sensor instead of antibodies, the researchers hope to create a more sensitive test that can detect ManLAM in the urine even when only small quantities are present. This has significant implications for TB diagnosis and treatment, particularly for patients with very active cases or those who are immunosuppressed due to HIV or other conditions.

The research was funded by the National Institute of Allergy and Infectious Disease, the National Institutes of Health, the National Science Foundation, and the Croucher Fellowship. The findings have the potential to revolutionize TB diagnosis and improve patient outcomes worldwide.

Continue Reading

Trending