Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Astronomy

JWST Unlocks Secrets of Galaxy Formation

Using the James Webb Space Telescope, scientists spotted thin and thick disks in galaxies as far back as 10 billion years ago—something never seen before. These observations reveal that galaxies first formed thick, chaotic disks, and only later developed the calm, thin disks seen in modern spirals like the Milky Way.

Avatar photo

Published

on

The James Webb Space Telescope (JWST) has revolutionized our understanding of galaxy formation by providing unprecedented views of distant galaxies. A recent study published in the Monthly Notices of the Royal Astronomical Society has used JWST images to unlock a 10-billion-year mystery of how galaxies shape themselves.

Researchers have long known that many galaxies, including our own Milky Way, consist of two distinct parts: a thin disk and a thick disk. The thin disk contains younger, metal-rich stars, while the thick disk is composed of older, metal-poor stars. However, until now, these components had only been identified in nearby galaxies.

The study used 111 JWST images of distant edge-on galaxies to examine their vertical disk structures. This allowed researchers to observe how galaxies have built their disks over cosmic history. The findings revealed a consistent trend: in the earlier universe, more galaxies appear to have had a single thick disk, while in later epochs, more galaxies showed a two-layered structure with an additional thin disk component.

This suggests that galaxies first formed a thick disk, followed by the formation of a thin disk within it. In more massive galaxies, this thin disk appears to have formed earlier. The study estimated the thin disk formation time for Milky Way-sized galaxies to be around 8 billion years ago, aligning with formation timelines for the Milky Way itself.

The research team examined not only the stellar structure but also the motion of gas, direct ingredients of stars obtained from the Atacama Large Millimeter/submillimeter Array (ALMA) and ground-based surveys in the literature. These observations supported a coherent formation scenario: galaxies first formed a thick disk, followed by the formation of a thin disk within it.

The study hopes to bridge studies of nearby galaxies with far away ones and refine our understanding of disk formation. The findings provide valuable insights into galaxy evolution and answer one of the biggest questions in astronomy: was our galaxy’s formation typical or unique?

Astronomy

Unveiling the Early Stages of Planet Formation Around Young Stars

In a stellar nursery 460 light-years away, astronomers sharpened old ALMA data and spotted crisp rings and spirals swirling around 27 infant stars—evidence that planets start taking shape just a few hundred thousand years after their suns ignite, far earlier than anyone expected.

Avatar photo

Published

on

The universe has long been a mystery waiting to be unraveled. Recent discoveries have shed new light on one of its most fascinating phenomena: planet formation around young stars. Research led by Ayumu Shoshi and his team at Kyushu University and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) reveals that signs of planet formation may appear earlier than expected, providing a better understanding of this complex process.

The journey to form planets begins with protostars – stars still in the making. These nascent stars are surrounded by disks composed of low-temperature molecular gas and dust, known as protoplanetary disks. It’s within these disks that planets take shape. However, observing these early stages of planet formation directly is a challenge due to their distance from Earth.

The research team utilized improved data processing techniques to reanalyze archive data from the ALMA radio telescope. Their focus was on the Ophiuchus star-forming region, located 460 light-years away in the direction of the constellation Ophiuchus. The team produced high-resolution images of 78 disks, with more than half achieving a resolution over three times better than previous images.

The new images show striking patterns – ring or spiral shapes – in 27 of the disks, with 15 identified for the first time in this study. Combining these findings with previous work on another star-forming region, the team discovered that characteristic disk substructures emerge in disks larger than 30 astronomical units (au) around stars just a few hundred thousand years after they were born.

This groundbreaking research suggests that planets may begin to form at an earlier stage than previously believed, when the disk still possesses abundant gas and dust. In essence, planets grow together with their very young host stars, opening doors to new insights into the origins of our solar system and potentially habitable planets like Earth.

Continue Reading

Astronomy

A Cosmic Masterpiece Revealed: The Sculptor Galaxy Unveiled in Thousands of Colors

Astronomers have produced the most detailed map yet of the Sculptor Galaxy, revealing hundreds of previously unseen celestial features in stunning color and resolution. By combining over 50 hours of observations using the European Southern Observatory s Very Large Telescope, scientists captured a full-spectrum portrait that unravels the galaxy s stellar makeup in thousands of colors. This revolutionary technique offers an unprecedented look at the age, composition, and motion of stars and gas across the galaxy s vast 65,000-light-year span. Among the highlights are 500 newly identified planetary nebulae, glowing remnants of dying stars, which help pinpoint the galaxy s distance and open new windows into galactic evolution.

Avatar photo

Published

on

Astronomers have created a galactic masterpiece: an ultra-detailed image that reveals previously unseen features in the Sculptor Galaxy. Using the European Southern Observatory’s Very Large Telescope (ESO’s VLT), they observed this nearby galaxy in thousands of colors simultaneously. By capturing vast amounts of data at every single location, they created a galaxy-wide snapshot of the lives of stars within Sculptor.

“Galaxies are incredibly complex systems that we are still struggling to understand,” says ESO researcher Enrico Congiu, who led a new Astronomy & Astrophysics study on Sculptor. Reaching hundreds of thousands of light-years across, galaxies are extremely large, but their evolution depends on what’s happening at much smaller scales.

“The Sculptor Galaxy is in a sweet spot,” says Congiu. “It is close enough that we can resolve its internal structure and study its building blocks with incredible detail, but at the same time, big enough that we can still see it as a whole system.”

A galaxy’s building blocks — stars, gas and dust — emit light at different colors. Therefore, the more shades of color there are in an image of a galaxy, the more we can learn about its inner workings. While conventional images contain only a handful of colors, this new Sculptor Galaxy image is rendered in thousands of colors, revealing intricate details that would have been lost otherwise.

This extraordinary image not only showcases the beauty and complexity of the Sculptor Galaxy but also serves as a testament to human ingenuity and scientific curiosity. By pushing the boundaries of what we thought was possible with astronomical observations, researchers continue to expand our understanding of the cosmos and inspire new generations of scientists and space enthusiasts alike.

The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy.

Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, Czechia, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner.

ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvelous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor.

Continue Reading

Astronomy

The Galactic Puzzle: Uncovering the Mystery of Massive Star Formation in the Milky Way’s Center

At the heart of our galaxy lies a cosmic puzzle: although the Galactic Center is packed with star-making material, massive stars form there surprisingly slowly. Using NASA’s retired SOFIA observatory, scientists captured rare high-resolution infrared views that revealed dozens of new stars being born, but not in the numbers or sizes one might expect.

Avatar photo

Published

on

The Milky Way’s central region has long been a subject of fascination for astronomers, but recent research led by Dr. James De Buizer at the SETI Institute and Dr. Wanggi Lim at IPAC at Caltech has revealed a surprising finding: massive star formation is occurring in this area at a lower rate than expected. The study primarily relied on observations from NASA’s retired SOFIA airborne observatory, focusing on three star-forming regions – Sgr B1, Sgr B2, and Sgr C – located at the heart of the Galaxy.

Contrary to previous assumptions that star formation is likely depressed near the Galactic Center, these areas have been found to produce stars with relatively low masses. Despite their dense clouds of gas and dust, conditions typically conducive to forming massive stars, these regions struggle to create such high-mass stars. Furthermore, they appear to lack sufficient material for continued star formation, suggesting that only one generation of stars is produced.

The researchers discovered over 60 presently-forming massive stars within the Galactic Center regions, but found that these areas formed fewer stars and topped out at lower stellar masses than similar-sized regions elsewhere in the Galaxy. The team’s study also suggested that extreme conditions in the Galactic Center, such as its rapid rotation and interaction with older stars and material falling towards the black hole, might be inhibiting gas clouds from forming stars.

However, Sgr B2 was found to be an exception among the studied areas, maintaining a reservoir of dense gas and dust despite having an unusually low rate of present massive star formation. The researchers proposed that this region may represent a new category of stellar nursery or challenge traditional assumptions about giant H II regions hosting massive star clusters.

The study’s findings have significant implications for our understanding of star formation in the Milky Way, highlighting the importance of continued research into the complex dynamics at play within the Galactic Center.

Continue Reading

Trending