Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Air Quality

Overcoming a Critical Bottleneck in CO2 Capture and Conversion with Nanofiltration Membranes

New research could improve the efficiency of electrochemical carbon-dioxide capture and release by six times and cut costs by at least 20 percent. Researchers added nanoscale filtering membranes to a carbon-capture system, separating the ions that carry out the capture and release steps, and enabling both steps to proceed more efficiently.

Avatar photo

Published

on

The efficiency of electrochemical carbon dioxide capture and release systems has been hindered by a trade-off between the chemicals used for absorption and release. Researchers at MIT have found a solution to this bottleneck using nanoscale filtering membranes, which can improve the process’s efficiency by six times and reduce costs by 20 percent.

The researchers, led by Kripa Varanasi, used special nanofiltration membranes to separate ions in the solution based on their charge. This allowed them to feed hydroxide ions back to the absorption side of the system while sending carbonates ahead to the electrochemical release stage. This decoupling enabled both parts of the cycle to operate at their more efficient ranges, reducing efficiency losses and making the process more stable.

Testing showed that the nanofiltration could separate the carbonate from the hydroxide solution with about 95 percent efficiency, validating the concept under realistic conditions. The analysis also showed that the new system would cost around $450 per ton of carbon dioxide captured, a significant reduction from the current estimate of at least $600 per ton.

This technology has the potential to apply not only to direct air capture systems but also to point-source systems and conversion processes converting captured carbon dioxide into useful products such as fuel or chemical feedstocks. The researchers believe that this approach could lead to safer alternative chemistries for carbon capture, improving reaction rates and enabling safety.

The team’s goal is to provide industry-scale, cost-effective, and reliable technologies and systems that enable companies to directly meet their decarbonization targets. With ongoing work, they are confident that the costs can be further brought down to around $200 per ton, making it viable for widespread adoption.

This research was supported by Shell International Exploration and Production Inc. through the MIT Energy Initiative and the U.S. National Science Foundation, and made use of the facilities at MIT.nano.

Air Quality

Unlocking the Secrets of Environmental DNA: A Powerful Tool for Wildlife and Human Surveillance

Environmental DNA from the air, captured with simple air filters, can track everything from illegal drugs to the wildlife it was originally designed to study.

Avatar photo

Published

on

Dublin, a city known for its warm welcome and lively traditional music, has an unsuspecting secret – the air is teeming with DNA from various species. From cannabis to bobcats, even magic mushrooms – at least their DNA – are floating on the breeze. A new study reveals that this phenomenon can be leveraged to track wildlife, viruses, and other substances in unprecedented ways.

David Duffy, Ph.D., a professor of wildlife disease genomics at the University of Florida, has developed innovative methods for deciphering environmental DNA (eDNA). His lab has been studying sea turtle genetics using eDNA from water samples. Expanding on this research, they’ve created tools to study every species – including humans – from DNA captured in environmental samples like air filters.

“What we’re finding is that you can get intact large fragments of DNA from the air,” Duffy said. “That means you can study species without directly having to disturb them.” This approach opens up vast possibilities for tracking all species in an area simultaneously, from microbes and viruses to vertebrates like bobcats and humans.

A proof-of-concept experiment demonstrated that researchers could pick up signs of hundreds of different human pathogens from the Dublin air, including viruses and bacteria. This surveillance method can aid scientists in tracking emerging diseases. Additionally, it can track common allergens, such as peanut or pollen, more precisely than current methods allow.

In another test, Duffy’s lab identified the origin of bobcats and spiders whose DNA was collected from air filters in a Florida forest. This technique allows researchers to track endangered species without having to lay eyes on them or gather scat samples – all while knowing their exact origin is crucial for conservation efforts.

This powerful analysis is paired with impressive speed and efficiency, as demonstrated by the team’s ability to process DNA for every species in as little as a day using compact, affordable equipment, and software hosted in the cloud. This quick turnaround is orders of magnitude faster than was possible just a few years ago, making advanced environmental studies more accessible to scientists worldwide.

However, Duffy and his collaborators have called for ethical guardrails due to the potential for sensitive human genetic data to be identified using these tools.

“It seems like science fiction, but it’s becoming science fact,” Duffy said. “The technology is finally matching the scale of environmental problems.” As researchers continue to explore the capabilities of eDNA, they must also address the challenges and implications of this rapidly developing field.

Continue Reading

Air Pollution

The Persistent Pollutant: Uncovering the Mystery of Atmospheric Nitrates

A new study details processes that keep pollutants aloft despite a drop in emissions.

Avatar photo

Published

on

By

The persistent presence of nitrates in the atmosphere has long been a concern for environmental scientists. Despite efforts to reduce emissions over the past few decades, nitrate levels remain stubbornly high. A recent study published in Nature Communications sheds light on this enigma, revealing that chemical processes within the atmosphere are responsible for the persistence of these pollutants.

The research team led by Hokkaido University’s Professor Yoshinori Iizuka examined nitrate deposition history from 1800 to 2020 in an ice core taken from southeastern Greenland. The results showed a gradual increase in nitrates up to the 1970s, followed by a slower decline after the 1990s. This trend mirrors the changes in emissions of nitrate precursors over the same period.

The study’s findings suggest that factors other than emission reductions are driving the persistence of atmospheric nitrates. The researchers used a global chemical transport model to investigate these factors and discovered that atmospheric acidity is the key culprit. As acidity levels rise, more nitrates become trapped in particulate form, enabling them to persist longer and travel farther.

The implications of this study are significant. Accurate measurements of particulate nitrates in ice cores provide valuable data for refining climate modeling predictions. Moreover, the findings suggest that atmospheric nitrates will soon replace sulfates as the primary aerosol in the Arctic, further amplifying warming in the region.

As Professor Iizuka notes, “Ours is the first study to present accurate information for records of particulate nitrates in ice cores.” The persistence of these pollutants highlights the importance of continued research into atmospheric chemistry and climate modeling. By understanding the complex interactions within our atmosphere, we can better predict and prepare for the challenges that lie ahead.

Continue Reading

Aerospace

Unveiling the Molecular Link Between Air Pollution and Pregnancy Risks: A Groundbreaking Study

A new study found exposure to specific tiny particles in air pollution during pregnancy are associated with increased risk of various negative birth outcomes.

Avatar photo

Published

on

The air we breathe has long been a concern for public health, but a recent study by Emory University researchers sheds light on a specific and alarming link between air pollution and pregnancy risks. Published in Environmental Science & Technology, the research reveals that exposure to tiny particles in air pollution during pregnancy can disrupt maternal metabolism, leading to increased risk of various negative birth outcomes.

The study analyzed blood samples from 330 pregnant women in the Atlanta metropolitan area, providing a detailed insight into how ambient fine particulate matter (PM2.5) affects the metabolism of pregnant women and contributes to increased risks of preterm and early term births. This pioneering work marks the first time researchers have been able to investigate the specific fine particles responsible for these adverse outcomes.

“The link between air pollution and premature birth has been well established, but for the first time we were able to look at the detailed pathway and specific fine particles to identify how they are reflected in the increased risk of adverse birth outcomes,” says Donghai Liang, PhD, study lead author and associate professor of environmental health. “This is important because if we can figure out the ‘why’ and ‘how,’ then we can know better how to address it.”

Previous research has shown that pregnant women and fetuses are more vulnerable than other populations to exposure to PM2.5, which is emitted from combustion sources such as vehicle exhaust, industrial processes, and wildfires. This increased vulnerability is linked to a higher likelihood of preterm births, the leading cause of death globally among children under the age of five.

Preterm birth is associated with complications such as cerebral palsy, respiratory distress syndrome, and long-term noncommunicable disease risks. Early term births (37-39 weeks of gestation) are also linked to increased neonatal morbidity and developmental challenges. Approximately 10% of preterm births worldwide are attributable to PM2.5 exposure.

As an air pollution scientist, Liang emphasizes the importance of addressing this issue beyond simply asking people to move away from highly polluted areas. “From a clinical intervention standpoint, it’s critical to gain a better understanding on these pathways and molecules affected by pollution,” he says. “In the future, we may be able to target some of these molecules to develop effective strategies or clinical interventions that could help reduce these adverse health effects.”

This groundbreaking study highlights the urgent need for policymakers and healthcare providers to take action against air pollution, particularly in areas with high levels of PM2.5 exposure. By understanding the molecular link between air pollution and pregnancy risks, we can work towards developing targeted solutions to mitigate these negative outcomes and protect the health of future generations.

Continue Reading

Trending