Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Birth Defects

Repairing Brain Damage: New Research Offers Hope for Huntington’s Disease Treatment

New research shows that the adult brain can generate new neurons that integrate into key motor circuits, findings that may point to a new way to treat neurogenerative disorders.

Avatar photo

Published

on

Our brains have a remarkable ability to repair themselves. Researchers have now shown that the adult brain can generate new neurons that integrate into key motor circuits, offering a potential new way to restore brain function and slow the progression of diseases like Huntington’s.

The study, led by researchers at the University of Rochester Medical Center (URMC), demonstrates that stimulating natural brain processes may help repair damaged neural networks. “Our research shows that we can encourage the brain’s own cells to grow new neurons that join in naturally with the circuits controlling movement,” said Abdellatif Benraiss, PhD, a senior author of the study.

For decades, it was believed that the adult brain could not generate new neurons. However, research has shown that niches in the brain contain reservoirs of progenitor cells capable of producing new neurons. These cells actively produce neurons during early development but switch to producing support cells called glia shortly after birth.

One area of the brain where these cells congregate is the ventricular zone, which is adjacent to the striatum, a region of the brain devastated by Huntington’s disease. Researchers have identified proteins that direct progenitor cells to differentiate and produce neurons, such as brain-derived neurotrophic factor (BDNF) and Noggin.

In the study, researchers delivered these proteins to progenitor cells in mice and found that they generated new medium spiny neurons, a major cell type lost in Huntington’s disease. The newly generated neurons connected with the complex networks in the brain responsible for motor control, replacing the function of the neurons lost in Huntington’s.

The researchers used advanced technologies such as electrophysiology, optogenetics, and mouse behavior to map the connections between the new neurons and their neighbors. They also employed optogenetics techniques to turn the new cells on and off, confirming their integration into broader brain networks important for motor control.

This study suggests that a possible treatment for Huntington’s disease would be to encourage the brain to replace lost cells with new, functional ones and restore communication pathways. The authors suggest this approach could also be combined with other cell replacement therapies, such as replacing diseased glial cells with healthy ones.

Overall, this research offers hope for developing effective treatments for diseases like Huntington’s, which are characterized by the loss of neurons in the brain.

Autism

CRISPR-edited stem cells hold key to understanding autism spectrum disorder

A team at Kobe University has created a game-changing resource for autism research: 63 mouse embryonic stem cell lines, each carrying a genetic mutation strongly associated with the disorder. By pairing classic stem cell manipulation with precise CRISPR gene editing, they ve built a standardized platform that mirrors autism-linked genetic conditions in mice. These models not only replicate autism-related traits but also expose key dysfunctions, like the brain s inability to clean up faulty proteins.

Avatar photo

Published

on

CRISPR technology has revolutionized genetics research, enabling scientists to edit genes with unprecedented precision. Recently, researchers at Kobe University developed a new method for modifying embryonic stem cells using CRISPR, creating a bank of 63 mouse embryonic stem cell lines containing the mutations most strongly associated with autism spectrum disorder (ASD). This breakthrough achievement has shed light on the hidden causes of ASD.

For decades, scientists have known that genetics play a significant role in the development of ASD. However, pinpointing the precise cause and mechanism remained elusive due to the lack of a standardized biological model for studying the effects of different mutations associated with the disorder. To address this challenge, Takumi Toru and his team at Kobe University embarked on a journey to create a reliable model by combining conventional manipulation techniques for mouse embryonic stem cells with CRISPR gene editing.

The new method proved highly efficient in making genetic variants of these cells, allowing the researchers to produce 63 mouse embryonic stem cell lines containing the mutations most strongly associated with ASD. These cell lines were further developed into various cell types and tissues, even generating adult mice with their genetic variations. The analysis of these cell lines revealed that autism-causing mutations often result in neurons being unable to eliminate misshapen proteins.

This finding is particularly interesting since the local production of proteins is a unique feature in neurons, and a lack of quality control of these proteins may be a causal factor of neuronal defects in ASD. Takumi expects that this achievement will be an invaluable resource for researchers studying autism and searching for drug targets. Moreover, the genetic variants studied are also implicated in other neuropsychiatric disorders such as schizophrenia and bipolar disorder, making this library potentially useful for studying these conditions as well.

This research was funded by various organizations, including the Japan Society for the Promotion of Science and the National Center of Neurology and Psychiatry. The study demonstrates the potential of CRISPR technology to reveal the hidden causes of complex diseases like ASD, paving the way for future discoveries and treatments.

Continue Reading

Back and Neck Pain

Unveiling the Secrets of the Universe: The Largest-ever Map Reveals 10x More Early Galaxies Than Expected

An international team of scientists has unveiled the largest and most detailed map of the universe ever created using the James Webb Space Telescope, revealing nearly 800,000 galaxies stretching back to almost the beginning of time. The COSMOS-Web project not only challenges long-held beliefs about galaxy formation in the early universe but also unexpectedly revealed 10 times more galaxies than anticipated along with supermassive black holes Hubble couldn t see.

Avatar photo

Published

on

The COSMOS-Web field, a vast map of the universe, has been released to the public, and it’s a game-changer. The largest-ever map of the cosmos, built with data collected by the James Webb Space Telescope (JWST), consists of imaging and a catalog of nearly 800,000 galaxies spanning nearly all of cosmic time.

The goal of the COSMOS-Web collaboration was to create this deep field of space on a physical scale that far exceeded anything that had been done before. “If you had a printout of the Hubble Ultra Deep Field on a standard piece of paper,” said UC Santa Barbara physics professor Caitlin Casey, “our image would be slightly larger than a 13-foot by 13-foot-wide mural, at the same depth.” That’s what we’re looking at here – a cosmic neighborhood that’s truly breathtaking.

The COSMOS-Web composite image reaches back about 13.5 billion years, covering about 98% of all cosmic time. The researchers wanted to see not just some of the most interesting galaxies at the beginning of time but also to get a wider view of cosmic environments that existed during the early universe, when the first stars, galaxies, and black holes formed.

And what a big surprise it turned out to be! Before JWST turned on, Casey said they made their best predictions about how many more galaxies the space telescope would see. But the best measurements from Hubble suggested that galaxies within the first 500 million years would be incredibly rare. “It makes sense,” she explained – “the Big Bang happens and things take time to gravitationally collapse and form, and for stars to turn on.”

But with JWST, they see roughly 10 times more galaxies than expected at these incredible distances. And it’s not just seeing more; they’re also seeing different types of galaxies and black holes that were previously invisible.

While the COSMOS-Web images and catalog answer many questions astronomers have had about the early universe, they also spark more questions. “Since the telescope turned on we’ve been wondering ‘Are these JWST datasets breaking the cosmological model?'” Casey said. “Because the universe was producing too much light too early; it had only about 400 million years to form something like a billion solar masses of stars.”

In releasing the data to the public, the hope is that other astronomers from all over the world will use it to further refine our understanding of how the early universe was populated and how everything evolved to the present day. The dataset may also provide clues to other outstanding mysteries of the cosmos, such as dark matter and physics of the early universe that may be different from what we know today.

“A big part of this project is the democratization of science and making tools and data from the best telescopes accessible to the broader community,” Casey said. The data was made public almost immediately after it was gathered, but only in its raw form, useful only to those with specialized technical knowledge and supercomputer access to process and interpret it.

The COSMOS collaboration has worked tirelessly for the past two years to convert raw data into broadly usable images and catalogs. In creating these products and releasing them, the researchers hope that even undergraduate astronomers could dig into the material and learn something new.

“Because the best science is really done when everyone thinks about the same data set differently,” Casey said. “It’s not just for one group of people to figure out the mysteries.”

For the COSMOS collaboration, the exploration continues. They’ve headed back to the deep field to further map and study it. “We have more data collection coming up,” she said. “We think we have identified the earliest galaxies in the image, but we need to verify that.”

Continue Reading

Autism

The Elusive Science of Tickling: Unraveling the Mysteries of a 2000-Year-Old Enigma

How come you can’t tickle yourself? And why can some people handle tickling perfectly fine while others scream their heads off? Neuroscientists argue that we should take tickle research more seriously.

Avatar photo

Published

on

The science of tickling has been shrouded in mystery for over 2000 years, leaving even the great philosophers Socrates and Charles Darwin baffled. Despite its ubiquity in human interaction, from playful teasing between parents and children to social bonding and emotional expression, the intricacies of tickling remain poorly understood. Neuroscientist Konstantina Kilteni argues that it’s time to take tickle research seriously, shedding light on the complex interplay of motor, social, neurological, developmental, and evolutionary aspects involved.

One of the most intriguing questions surrounding tickling is why we can’t tickle ourselves. Our brain appears to distinguish between self-induced and external stimuli, effectively “switching off” the tickling reflex when we know exactly where and when we’ll be tickled. This phenomenon has sparked interest in understanding what happens in our brain when we’re subjected to ticklish sensations.

Research suggests that people with autism spectrum disorder (ASD) perceive touches as more ticklish than those without ASD, offering a unique window into differences in brain development and function between individuals with and without the condition. Investigating this difference could provide valuable insights into the neurobiology of ASD and potentially inform strategies for better understanding and supporting individuals on the autism spectrum.

From an evolutionary perspective, the purpose and significance of tickling remain unclear. Kilteni notes that even apes like bonobos and gorillas exhibit responses to ticklish touches, while rats have been observed displaying similar behaviors. These observations raise questions about the role of tickling in human evolution and development, as well as its potential functions in social bonding and emotional expression.

To tackle these questions, Kilteni has established a specialized lab dedicated to studying tickling, where researchers can control and replicate various types of ticklish stimuli using mechanical devices like the “tickling chair.” By meticulously recording brain activity and physical reactions such as heart rate, sweating, breathing, laughter, and screaming responses, scientists hope to unlock the secrets of tickling and shed light on its significance in human biology and behavior.

As research continues to unravel the mysteries of tickling, it’s clear that this seemingly simple phenomenon holds a wealth of complexity and intrigue. By taking tickle research seriously, scientists like Kilteni aim to reveal new insights into human brain development, social bonding, emotional expression, and even the intricacies of ASD. The journey ahead promises to be fascinating, as we continue to explore the elusive science of tickling.

Continue Reading

Trending