Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Archaeology

Replanting Forests Can Help Cool the Planet, But Cutting Emissions Remains Essential

Replanting forests can help cool the planet even more than some scientists once believed, especially in the tropics. But even if every tree lost since the mid-19th century is replanted, the total effect won’t cancel out human-generated warming.

Avatar photo

Published

on

The article you provided highlights the significant impact that replanting forests can have on cooling the planet, especially in tropical regions. A new modeling study published in Communications Earth & Environment found that restoring forests to their preindustrial extent could lower global average temperatures by 0.34 degrees Celsius, roughly one-quarter of the warming the Earth has already experienced.

The researchers at the University of California, Riverside, showed that this effect is amplified when considering the chemical interactions between trees and other gases in the atmosphere. Trees release compounds known as biogenic volatile organic compounds (BVOCs), which interact with other gases to form particles that reflect sunlight and encourage cloud formation, both of which help cool the atmosphere.

However, it’s essential to note that reforestation is not a silver bullet for addressing climate change. Cutting emissions remains crucial, as stated by Bob Allen, a climate scientist at UC Riverside and lead author of the paper. “Reforestation is a powerful strategy, but it has to be paired with serious emissions reductions.”
The study also found that tropical forests produce stronger cooling effects with fewer drawbacks compared to higher-latitude regions. Trees in these areas are more efficient at absorbing carbon and produce greater amounts of BVOCs.

Beyond global temperature, reforestation can also affect regional air quality. The researchers found a 2.5 percent reduction in atmospheric dust in the northern hemisphere under their restoration scenario.
In conclusion, while replanting forests can help cool the planet, it is not a substitute for cutting fossil fuel use and emissions reductions. Climate change is a complex issue that requires a multifaceted approach. Every step toward restoration, no matter the scale, helps, as stated by Antony Thomas, graduate student in UCR’s Department of Earth and Planetary Sciences.

The article highlights the importance of considering regional differences and complexities when implementing reforestation efforts. For instance, Rwanda is an example of how conservation and economic development can align, with tourism revenue tied to forest protection reinvested in local communities, providing incentives to preserve land that might otherwise be cleared.
The study began as a project in Allen’s graduate-level climate modeling course at UC Riverside and eventually evolved into a collaborative research paper. Its conclusion is cautiously optimistic: forest restoration is a meaningful part of the climate solution, but not a substitute for cutting fossil fuel use.

“Climate change is real,” Thomas said. “And every step toward restoration, no matter the scale, helps.”

Ancient Civilizations

Ancient Arabia’s Hidden Treasures: Uncovering 2,700-Year-Old Knowledge of Psychoactive and Medicinal Plants

A new study uses metabolic profiling to uncover ancient knowledge systems behind therapeutic and psychoactive plant use in ancient Arabia.

Avatar photo

Published

on

The ancient civilization of Arabia was once home to a rich and diverse culture that valued knowledge, trade, and innovation. New research has shed light on one of the most fascinating aspects of their history: the deliberate use of psychoactive and medicinal plants for therapeutic and sensorial practices nearly 2,700 years ago.

Led by Dr. Barbara Huber and Professor Marta Luciani, a team of researchers analyzed organic residues preserved inside Iron Age fumigation devices excavated at the oasis settlement of Qurayyah in northwestern Saudi Arabia. Using advanced metabolic profiling techniques, they detected characteristic harmala alkaloids from the plant Peganum harmala, also known as Syrian rue or harmal.

“This discovery represents chemical evidence for the earliest known burning of harmal not just in Arabia but globally,” says Dr. Huber, lead author of the study. “Our findings shed light on how ancient communities drew upon traditional plant knowledge and their local pharmacopeia to care for their health, purify spaces, and potentially trigger psychoactive effects.”

The integration of biomolecular analysis with archaeology has allowed researchers to identify not just what kind of plants people were using but also where, how, and why. This breakthrough has significant implications for fields such as ethnobotany, medical anthropology, heritage studies, and pharmacognosy – all concerned with the long-term relationship between humans, medicinal plants, and natural resources.

In traditional medicine and household fumigation practices today in the region, Peganum harmala is known for its antibacterial, psychoactive, and therapeutic properties. The new findings underscore its long-standing cultural and medicinal significance.

“This discovery shows the deep historical roots of traditional healing and fumigation practices in Arabia,” adds Ahmed M. Abualhassan, Heritage Commission co-director of the Qurayyah project. “We’re preserving not only objects but also the intangible cultural heritage of ancient knowledge that still holds relevance in local communities today.”

Continue Reading

Archaeology

The Hidden World of Mountain Streamflow: A Surprise from the West’s Snow-Capped Mountains

Hydrologists show most streamflow out of the West’s mountains is old snowmelt on a multi-year underground journey. New study finds that spring runoff is on average 5 years old.

Avatar photo

Published

on

The Western United States is home to some of the most extensive agriculture and growing communities in the country. One of the key factors that sustain these developments is the meltwater from snow-capped mountains, which spills out every spring. For years, models have been used to predict the amount of streamflow available each year, assuming a small fraction of snowmelt enters shallow soil, with the remainder rapidly exiting in rivers and creeks. However, new research from University of Utah hydrologists suggests that this is not the case.

According to their findings, most spring runoff heading to reservoirs is actually several years old, indicating that most mountain snowfall has a long journey as groundwater before it leaves the mountains. This means that there is an order of magnitude more water stored underground than most Western water managers account for, said research leader Paul Brooks.

The team collected runoff samples at 42 sites and used tritium isotope analysis to determine the age of the water. Their findings were published in the journal Nature Communications Earth & Environment and co-authored by Utah geology professors Sara Warix and Kip Solomon in collaboration with research scientists around the West.

Determining the age of mountain streamflow is crucial for predicting how mountain hydrology will respond to changes in climate and land use, according to the researchers. They noted that there would be a lag between input storage and response, which means that even though models have been good in the past, they may not be reliable in the future.

The research also highlighted the importance of incorporating groundwater storage component into models to make good decisions moving forward. Brooks conducted sampling in 2022 while on sabbatical, visiting 42 sites twice, once in midwinter and again during spring runoff.

The state of Utah’s tracking is particularly robust, providing continuous streamflow data dating back 120 years. It’s an unparalleled dataset that has enabled hydrologists to document historic cycles in climate and streamflow that would otherwise have been missed, Brooks said.

According to Solomon, the vast majority of Earth’s fresh, usable water is underground, but just how much is there remains a puzzle. Dating water offers clues, and for determining the age of water, Solomon turns to tritium, a radioactive isotope of hydrogen with a half-life of 12.3 years.

The average age of the runoff sampled in the study varies among the catchment basins depending on their geology. The more porous the ground, the older its water is, since the subsurface can hold a lot more water. By contrast, glaciated canyons with low permeability and shallow bedrock, such as Utah’s Little Cottonwood Canyon, provide far less subsurface storage and younger waters, according to the study.

For decades, federal and state water managers have relied on a network of snowpack monitoring sites to provide data to guide forecasts of water availability for the upcoming year. It’s now clear that such snowpack data doesn’t provide a complete picture, according to the researchers.

“For much of the West, especially the Interior West where this study is based, our models have been losing skill,” Brooks said.

The growing disconnect between snowfall, snowpack volumes and streamflow is driven by variability in these large, previously unquantified subsurface water stores. As a case in point, Brooks highlighted the 2022 water year, which saw snowpacks in many Western states that were near or just below average. Yet that year experienced record low groundwater storage, resulting in much below average spring streamflow.

This new understanding of mountain streamflow has significant implications for water management and resource planning, particularly as the West continues to experience climate variability and change.

Continue Reading

Ancient Civilizations

Uncovering the Past: Archaeological Evidence of Roman Gladiators Bitten by Lions Revealed in Yorkshire

Bite marks found on a skeleton discovered in a Roman cemetery in York have revealed the first archaeological evidence of gladiatorial combat between a human and a lion.

Avatar photo

Published

on

The discovery of a skeleton in a Roman cemetery in York has provided the first archaeological evidence of gladiatorial combat between humans and lions. The bite marks found on the skeleton confirm that it was a gladiator who fought against a lion, providing a rare glimpse into the lives of these ancient fighters.

Malin Holst, a lecturer in Osteoarchaeology at the University of York, led the research team that made this groundbreaking discovery. She explained that the bite marks were likely made by a lion, which confirms that the skeletons buried at the cemetery were gladiators rather than soldiers or slaves.

“This is the final piece of evidence from work that began in 2004,” said Holst. “We have been excavating and analyzing human remains from the Roman cemetery on Driffield Terrace, and this discovery provides a unique insight into the lives of these ancient fighters.”

The skeleton was buried with two others, and overlaid with horse bones. In life, it appears to have had some issues with its spine that may have been caused by overloading to its back, inflammation of its lung and thigh, as well as malnutrition as a child, which he recovered from.

The lion bite wound — confirmed by comparing it to sample bites from a lion at a zoo — was not healed and is therefore likely to have been his cause of death. It is believed that the individual was decapitated after death, which appears to have been a ritual for some individuals in the Roman period, although the reasons for this remain unclear.

Analysis of the skeleton points towards this being a Bestarius, a gladiator role undertaken by volunteers or slaves.

The discovery has significant implications for our understanding of Roman entertainment culture. It was previously thought that gladiatorial combat only took place in major cities like Rome, but this find suggests that it was also practiced in smaller cities and towns throughout the empire.

“We often have a mental image of these combats occurring at the grand surroundings of the Colosseum in Rome,” said Holst, “but these latest findings show that these sporting events had a far reach, well beyond the centre of core Roman territories.”

York appears to have held gladiator arena events until as late as the fourth century AD. The presence of distinguished Roman leaders in York would have meant they required a lavish social life, and it is not surprising to see evidence of gladiator events, as well as such an extensive burial site for them.

The research team’s findings were published in the Journal of Science and Medical Research PLoS One, and are a collaboration between the University of York, Maynooth University, Cranfield University, Durham University, King’s College London, York Archaeology, and York Osteoarchaeology Ltd.

Continue Reading

Trending