Connect with us

Animals

“Reproducibility Issues Found in Insect Behavioral Experiments”

A recent study provides evidence that some results of behavioral experiments with insects cannot be fully reproduced. So far, possible reproducibility problems have been little discussed in this context.

Avatar photo

Published

on

The study on the reproducibility of behavioral experiments with insects has now been published, providing evidence that some results cannot be fully reproduced. This “reproducibility crisis” affects different disciplines, including biomedical research and behavioral studies on mammals. However, there have been no comparable systematic studies on insects – until now.

A team of researchers from the Universities of Münster, Bielefeld, and Jena (Germany) conducted a multi-laboratory approach to test the reproducibility of ecological insect studies. They performed three different behavioral experiments using different insect species: the turnip sawfly, meadow grasshopper, and red flour beetle.

Each experiment was carried out in laboratories in Münster, Bielefeld, and Jena, and the results were compared. The studies examined the effects of starvation on behavior in larvae of the turnip sawfly, the relationship between body color and preferred substrate color in grasshoppers, and the choice of habitat in red flour beetles.

To the research team’s knowledge, this study is the first to systematically demonstrate that behavioral studies on insects can also be affected by poor reproducibility. This was surprising, as insect studies generally use large sample sizes and could provide more robust results. However, reproducibility was higher compared to other systematic replication studies not carried out on insects.

The results are of particular interest to scientists in behavioral biology and ecology but also for all disciplines where behavioral experiments are conducted with animals. The research team concludes that deliberately introducing systematic variations could improve reproducibility in studies with living organisms.

Animals

Uncovering the Roots of Language: Chimpanzees’ Complex Communication System Reveals Insights into Human Origins

Wild chimpanzees alter the meaning of single calls when embedding them into diverse call combinations, mirroring linguistic operations in human language. Human language, however, allows an infinite generation of meaning by combining phonemes into words and words into sentences. This contrasts with the very few meaningful combinations reported in animals, leaving the mystery of human language evolution unresolved.

Avatar photo

Published

on

By

The human capacity for language has long been considered unique to our species. However, recent studies have challenged this notion by revealing that chimpanzees possess a complex communication system that rivals that of humans in terms of its combinatorial potential. Researchers from the Max Planck Institutes for Evolutionary Anthropology and Cognitive and Brain Sciences, along with colleagues from the Cognitive Neuroscience Center Marc Jeannerod and Neuroscience Research Center in Lyon, France, have recorded thousands of vocalizations from wild chimpanzees in the Taï National Park in Ivory Coast.

Their findings reveal that chimpanzees employ four distinct methods to alter meanings when combining single calls into two-call combinations. These include compositional and non-compositional combinations, analogous to the key linguistic principles in human language. The study also highlights the versatility of these combinations, which are used in a wide range of contexts beyond mere predator alerts.

One of the most significant aspects of this research is that it suggests that chimpanzees’ complex communication system may be more similar to human language than previously thought. This has implications for our understanding of the origins of language and the evolutionary history of humans. The study’s authors propose that the capacity for complex combinatorial capacities was already present in the common ancestor of humans and great apes, challenging the views of the last century that communication in great apes is fixed and linked to emotional states.

This research opens up new avenues for investigation into the evolution of language and highlights the importance of studying the communicative capabilities of our closest living relatives. As Cédric Girard-Buttoz, first author on the study, notes, “Our findings suggest a highly generative vocal communication system, unprecedented in the animal kingdom… This changes the views of the last century which considered communication in the great apes to be fixed and linked to emotional states, and therefore unable to tell us anything about the evolution of language.”

Continue Reading

Animals

A “Roadmap” to Understanding the Fruit Fly Brain: Breakthrough Study Reveals Comprehensive Insights into Entire Nervous System

Researchers have gained comprehensive insights into the entire nervous system of the fruit fly (Drosophila melanogaster). The study describes in detail the neurons that span the entire nervous system of the adult fruit fly. The researchers also compared the complete set of neural connections (the connectome) in a female and a male specimen — and identified differences.

Avatar photo

Published

on

The fruit fly (Drosophila melanogaster) has long been a model organism for scientists studying genetics, development, and behavior. However, despite its importance, the intricacies of the fruit fly’s nervous system have remained somewhat of a mystery – until now. Researchers at Leipzig University and other institutions have made a groundbreaking discovery, publishing a study in Nature that provides comprehensive insights into the entire nervous system of the adult fruit fly.

For the first time, scientists have mapped out the neural connections (the connectome) in a female and a male specimen, revealing differences between the two sexes. This breakthrough is a significant step forward in understanding the complex interactions within the fruit fly’s brain and nervous system.

The study, led by Dr. Katharina Eichler from Leipzig University, involved analyzing three connectomes: one female brain data set and two nerve cord data sets (one male, one female). The researchers used light microscopy to identify all neurons in the neck of the fruit fly that could be visualized using this technique.

This allowed them to analyze the circuits formed by these cells in their entirety. When comparing male and female neurons, the scientists identified sex-specific differences for the first time. They found previously unknown cells that exist only in one sex and are absent in the other.

One notable example is a descending neuron known as aSP22, which communicates with neurons present only in females. This finding provides an explanation for the behavioral differences observed when this neuron is active: female flies extend their abdomen to lay eggs, while males curl theirs forward to mate.

The study’s findings are significant not only because they provide a comprehensive overview of the fruit fly connectome but also because they offer a “roadmap” for future research. By understanding the intricate connections within the nervous system, scientists can design more intelligent experiments to investigate the function of individual neurons or entire circuits – saving time and resources.

As Eichler notes, now that the technical challenges in analyzing the fruit fly’s nervous system have been overcome, her research group is working on two new data sets covering the entire central nervous system of both a female and a male specimen. This continued research will undoubtedly shed more light on the complexities of the fruit fly brain and its implications for our understanding of nervous systems in general.

Continue Reading

Animals

The Social Parrot: Unpacking the Connection Between Communication and Group Living

For social animals, communication is a key that unlocks the benefits of group living. It’s well known that animals with more complex social lives tend to have more intricate ways of communicating, from the clicks and whistles of dolphins to the calls of primates. While this pattern is found broadly in many species, a new study on wild parrots drills deep into the social and vocal lives of individual birds. Researchers analyzing the social networks of monk parakeets in Spain have uncovered how an individual’s social ties shapes the calls these birds make.

Avatar photo

Published

on

The urban parks of Barcelona, Spain, are home to a thriving colony of tropical monk parakeets. These vibrant green birds, native to South America, have adapted well to their new European environment. As they live in large groups, they communicate with each other using an array of distinct sounds – offering scientists a unique window into understanding the intricate relationships between individual social connections and vocal variety.

For animals that live in complex societies, communication is the key that unlocks the benefits of group living. From dolphins’ clicks and whistles to primates’ calls, it’s well-known that species with more intricate social lives tend to have more diverse ways of communicating. However, a recent study on wild parrots has drilled deeper into the social and vocal lives of individual birds.

Researchers at the Max Planck Institute of Animal Behavior spent two years closely observing 337 monk parakeets in Spain, documenting their social lives and recording over 5,599 vocalizations – an astonishing number that provides a wealth of data for analysis. By examining these calls in terms of repertoire diversity (the variety of sounds a bird can make) and contact-call diversity (how unique this specific type of call is), the team was able to uncover some fascinating insights.

The study revealed that individual parakeets living in larger groups did indeed produce more variable repertoires of sounds. Interestingly, female parakeets had a more diverse repertoire than males – an unusual finding for birds. This suggests that females may be the more social sex, and their vocalizations reflect this.

Social network analysis showed that parakeets with more central positions in the social structure – those that were potentially more influential in the group – tended to have more diverse vocal repertoires. In other words, the most social individuals seemed to have a better vocabulary than less social individuals.

The researchers also found that close friends who allowed each other to approach within pecking distance sounded less like each other, as if they were trying to sound unique in their little gang. These findings offer clues about the evolution of complex communication, including human language.

As Simeon Smeele, the first author of the study, notes, “The next big step is to better understand what each of the sounds mean – a real mammoth task, since most of the social squawking happens in large groups with many individuals talking at the same time!” The study provides a crucial foundation for further research into the intricate relationships between communication and group living in animals.

Continue Reading

Trending