Connect with us
We’re experimenting with AI-generated content to help deliver information faster and more efficiently.
While we try to keep things accurate, this content is part of an ongoing experiment and may not always be reliable.
Please double-check important details — we’re not responsible for how the information is used.

Artificial Intelligence

Revolutionizing American Sign Language Translation with AI-Powered Ring

A research team has developed an artificial intelligence-powered ring equipped with micro-sonar technology that can continuously and in real time track finger-spelling in American Sign Language (ASL).

Avatar photo

Published

on

Revolutionizing American Sign Language Translation with AI-Powered Ring

A team of researchers from Cornell University has developed an innovative artificial intelligence (AI)-powered ring called SpellRing. This groundbreaking device is equipped with micro-sonar technology, allowing it to continuously and in real-time track fingerspelling in American Sign Language (ASL). The implications are vast – this technology could revolutionize the way ASL is translated by enabling seamless recognition of entire signed words and sentences.

The primary purpose of SpellRing is to facilitate text entry into computers or smartphones via fingerspelling, which is a crucial aspect of ASL. Proper nouns, names, and technical terms often require this method, as there are no corresponding signs for them in the language. The researchers behind SpellRing aimed to create a device that would be practical and user-friendly for the deaf and hard-of-hearing community.

According to Hyunchul Lim, lead author of the research paper “SpellRing: Recognizing Continuous Fingerspelling in American Sign Language using a Ring,” which will be presented at the Association of Computing Machinery’s conference on Human Factors in Computing Systems (CHI), many existing technologies that recognize fingerspelling in ASL have not been adopted by the target community due to their bulky and impractical design. The team sought to address this issue by developing a single ring that could capture all the subtle and complex finger movements involved in ASL.

SpellRing is worn on the thumb and features a microphone and speaker, which send and receive inaudible sound waves to track hand and finger movements. A mini gyroscope further tracks the hand’s motion, while a proprietary deep-learning algorithm processes the sonar images to predict the ASL fingerspelled letters in real-time with similar accuracy as many existing systems.

The researchers conducted an evaluation of SpellRing using 20 experienced and novice ASL signers, who naturally and continuously fingerspelled more than 20,000 words of varying lengths. The results showed that SpellRing’s accuracy rate was between 82% and 92%, depending on the difficulty of the words.

“We’ve bridged some of the gap between the technical community who develop tools and the target community who use them,” said Cheng Zhang, assistant professor of information science and a paper co-author. “We designed SpellRing for target users who evaluated it.”

In the future, Lim plans to integrate the micro-sonar system into eyeglasses to capture upper body movements and facial expressions, aiming to create a more comprehensive ASL translation system. “Deaf and hard-of-hearing people use more than their hands for ASL. They use facial expressions, upper body movements and head gestures,” said Lim. “ASL is a very complicated, complex visual language.”

This research was funded by the National Science Foundation.

Artificial Intelligence

AI Uncovers Hidden Heart Risks in CT Scans: A Game-Changer for Cardiovascular Care

What if your old chest scans—taken years ago for something unrelated—held a secret warning about your heart? A new AI tool called AI-CAC, developed by Mass General Brigham and the VA, can now comb through routine CT scans to detect hidden signs of heart disease before symptoms strike.

Avatar photo

Published

on

The Massachusetts General Brigham researchers have developed an innovative artificial intelligence (AI) tool called AI-CAC to analyze previously collected CT scans and identify individuals with high coronary artery calcium (CAC) levels, indicating a greater risk for cardiovascular events. Their research, published in NEJM AI, demonstrated the high accuracy and predictive value of AI-CAC for future heart attacks and 10-year mortality.

Millions of chest CT scans are taken each year, often in healthy people, to screen for lung cancer or other conditions. However, this study reveals that these scans can also provide valuable information about cardiovascular risk, which has been going unnoticed. The researchers found that AI-CAC had a high accuracy rate (89.4%) at determining whether a scan contained CAC or not.

The gold standard for quantifying CAC uses “gated” CT scans, synchronized to the heartbeat to reduce motion during the scan. However, most chest CT scans obtained for routine clinical purposes are “nongated.” The researchers developed AI-CAC, a deep learning algorithm, to probe through these nongated scans and quantify CAC.

The AI-CAC model was 87.3% accurate at determining whether the score was higher or lower than 100, indicating a moderate cardiovascular risk. Importantly, AI-CAC was also predictive of 10-year all-cause mortality, with those having a CAC score over 400 having a 3.49 times higher risk of death over a 10-year period.

The researchers hope to conduct future studies in the general population and test whether the tool can assess the impact of lipid-lowering medications on CAC scores. This could lead to the implementation of AI-CAC in clinical practice, enabling physicians to engage with patients earlier, before their heart disease advances to a cardiac event.

As Dr. Raffi Hagopian, first author and cardiologist at the VA Long Beach Healthcare System, emphasized, “Using AI for tasks like CAC detection can help shift medicine from a reactive approach to the proactive prevention of disease, reducing long-term morbidity, mortality, and healthcare costs.”

Continue Reading

Artificial Intelligence

Uncovering Human Superpowers: How Our Brains Master Affordances that Elude AI

Scientists at the University of Amsterdam discovered that our brains automatically understand how we can move through different environments—whether it’s swimming in a lake or walking a path—without conscious thought. These “action possibilities,” or affordances, light up specific brain regions independently of what’s visually present. In contrast, AI models like ChatGPT still struggle with these intuitive judgments, missing the physical context that humans naturally grasp.

Avatar photo

Published

on

By

Uncovering Human Superpowers: How Our Brains Master Affordances that Elude AI

Imagine walking through a park or swimming in a lake – it’s a natural ability we take for granted. Researchers at the University of Amsterdam have shed light on how our brains process this intuitive knowledge, and the implications are fascinating. By studying brain activity while people viewed various environments, they discovered unique patterns associated with “affordances” – opportunities for action.

In essence, when we look at a scene, our brains automatically consider what we can do in it, whether it’s walking, cycling, or swimming. This is not just a psychological concept but a measurable property of our brains. The research team, led by Iris Groen, used an MRI scanner to investigate brain activity while participants viewed images of indoor and outdoor environments.

The results were striking: certain areas in the visual cortex became active in a way that couldn’t be explained by visible objects in the image. These brain areas not only represented what could be seen but also what you can do with it – even when participants weren’t given an explicit action instruction. This means that affordance processing occurs automatically, without conscious thought.

The researchers compared these human abilities with AI models, including ChatGPT, and found that they were worse at predicting possible actions. Even the best AI models didn’t give exactly the same answers as humans, despite it being a simple task for us. This highlights how our way of seeing is deeply intertwined with how we interact with the world.

The study has significant implications for the development of reliable and efficient AI. As more sectors use AI, it’s crucial that machines not only recognize what something is but also understand what it can do. For example, a robot navigating a disaster area or a self-driving car distinguishing between a bike path and a driveway.

Moreover, the research touches on the sustainable aspect of AI. Current training methods are energy-intensive and often accessible to large tech companies. By understanding how our brains work and process information efficiently, we can make AI smarter, more economical, and more human-friendly.

The discovery of affordance processing in the brain opens up new avenues for improving AI and making it more sustainable. As we continue to explore the intricacies of human cognition, we may uncover even more human superpowers that elude AI – a fascinating prospect indeed.

Continue Reading

Artificial Intelligence

“Future-Proofing Workers: How Countries Are Preparing for an AI-Dominated Job Market”

AI is revolutionizing the job landscape, prompting nations worldwide to prepare their workforces for dramatic changes. A University of Georgia study evaluated 50 countries’ national AI strategies and found significant differences in how governments prioritize education and workforce training. While many jobs could disappear in the coming decades, new careers requiring advanced AI skills are emerging. Countries like Germany and Spain are leading with early education and cultural support for AI, but few emphasize developing essential human soft skills like creativity and communication—qualities AI can’t replace.

Avatar photo

Published

on

By

The article “Future-Proofing Workers: How Countries Are Preparing for an AI-Dominated Job Market” highlights the impact of artificial intelligence on the workforce and explores how different countries are preparing for this shift.

According to research from the University of Georgia, almost half of today’s jobs could vanish over the next 20 years due to the growth of AI. However, governments around the world are taking steps to help their citizens gain the skills they’ll need to thrive in an AI-dominated job market.

The study examined 50 countries’ national AI strategies, focusing on policies for education and the workforce. The researchers used six indicators to evaluate each country’s prioritization on AI workforce training and education, classifying them as giving high, medium or low priority.

Only 13 countries gave high prioritization to training the current workforce and improving AI education in schools. Eleven of those were European countries, with Mexico and Australia being the two exceptions. The United States was one of 23 countries that considered workforce training and AI education a medium priority, with a less detailed plan compared to countries that saw them as a high priority.

Some common themes emerged between countries, such as establishing or improving AI-focused programs in universities, on-the-job training, and improving AI education for K-12 students. However, few focused on vulnerable populations such as the elderly or unemployed through programs to teach them basic AI skills.

Researchers also noted that cultivating interest in AI could help students prepare for careers, with countries like Germany emphasizing creating a culture that encourages interest in AI and Spain starting to teach kids AI-related skills as early as preschool.

Developing human soft skills, such as creativity, collaboration, and communication, was highlighted as crucial to ensuring students and employees continue to have a place in the workforce. This study was published in Human Resource Development Review.

Continue Reading

Trending