Connect with us

Artificial Intelligence

Revolutionizing American Sign Language Translation with AI-Powered Ring

A research team has developed an artificial intelligence-powered ring equipped with micro-sonar technology that can continuously and in real time track finger-spelling in American Sign Language (ASL).

Avatar photo

Published

on

Revolutionizing American Sign Language Translation with AI-Powered Ring

A team of researchers from Cornell University has developed an innovative artificial intelligence (AI)-powered ring called SpellRing. This groundbreaking device is equipped with micro-sonar technology, allowing it to continuously and in real-time track fingerspelling in American Sign Language (ASL). The implications are vast – this technology could revolutionize the way ASL is translated by enabling seamless recognition of entire signed words and sentences.

The primary purpose of SpellRing is to facilitate text entry into computers or smartphones via fingerspelling, which is a crucial aspect of ASL. Proper nouns, names, and technical terms often require this method, as there are no corresponding signs for them in the language. The researchers behind SpellRing aimed to create a device that would be practical and user-friendly for the deaf and hard-of-hearing community.

According to Hyunchul Lim, lead author of the research paper “SpellRing: Recognizing Continuous Fingerspelling in American Sign Language using a Ring,” which will be presented at the Association of Computing Machinery’s conference on Human Factors in Computing Systems (CHI), many existing technologies that recognize fingerspelling in ASL have not been adopted by the target community due to their bulky and impractical design. The team sought to address this issue by developing a single ring that could capture all the subtle and complex finger movements involved in ASL.

SpellRing is worn on the thumb and features a microphone and speaker, which send and receive inaudible sound waves to track hand and finger movements. A mini gyroscope further tracks the hand’s motion, while a proprietary deep-learning algorithm processes the sonar images to predict the ASL fingerspelled letters in real-time with similar accuracy as many existing systems.

The researchers conducted an evaluation of SpellRing using 20 experienced and novice ASL signers, who naturally and continuously fingerspelled more than 20,000 words of varying lengths. The results showed that SpellRing’s accuracy rate was between 82% and 92%, depending on the difficulty of the words.

“We’ve bridged some of the gap between the technical community who develop tools and the target community who use them,” said Cheng Zhang, assistant professor of information science and a paper co-author. “We designed SpellRing for target users who evaluated it.”

In the future, Lim plans to integrate the micro-sonar system into eyeglasses to capture upper body movements and facial expressions, aiming to create a more comprehensive ASL translation system. “Deaf and hard-of-hearing people use more than their hands for ASL. They use facial expressions, upper body movements and head gestures,” said Lim. “ASL is a very complicated, complex visual language.”

This research was funded by the National Science Foundation.

Artificial Intelligence

Ping Pong Robot Aces High-Speed Precision Shots

Engineers developed a ping-pong-playing robot that quickly estimates the speed and trajectory of an incoming ball and precisely hits it to a desired location on the table.

Avatar photo

Published

on

By

The MIT engineers’ latest creation is a powerful and lightweight ping pong bot that returns shots with high-speed precision. This table tennis tech has come a long way since the 1980s, when researchers first started building robots to play ping pong. The problem requires a unique combination of technologies, including high-speed machine vision, fast and nimble motors and actuators, precise manipulator control, and accurate real-time prediction.

The team’s new design comprises a multijointed robotic arm that is fixed to one end of a standard ping pong table and wields a standard ping pong paddle. Aided by several high-speed cameras and a high-bandwidth predictive control system, the robot quickly estimates the speed and trajectory of an incoming ball and executes one of several swing types – loop, drive, or chop – to precisely hit the ball to a desired location on the table with various types of spin.

In tests, the engineers threw 150 balls at the robot, one after the other, from across the ping pong table. The bot successfully returned the balls with a hit rate of about 88 percent across all three swing types. The robot’s strike speed approaches the top return speeds of human players and is faster than that of other robotic table tennis designs.

The researchers have since tuned the robot’s reaction time and found the arm hits balls faster than existing systems, at velocities of 20 meters per second. Advanced human players have been known to return balls at speeds of between 21 to 25 meters per second.

“Some of the goal of this project is to say we can reach the same level of athleticism that people have,” Nguyen says. “And in terms of strike speed, we’re getting really, really close.”

The team’s design has several implications for robotics and AI research. It could be adapted to improve the speed and responsiveness of humanoid robots, particularly for search-and-rescue scenarios, or situations where a robot would need to quickly react or anticipate.

This technology also has potential applications in smart robotic training systems. A robot like this could mimic the maneuvers that an opponent would do in a game environment, in a way that helps humans play and improve.

The researchers plan to further develop their system, enabling it to cover more of the table and return a wider variety of shots. This research is supported, in part, by the Robotics and AI Institute.

Continue Reading

Agriculture and Food

The Edible Aquatic Robot: Harnessing Nature’s Power to Monitor Waterways

An edible robot leverages a combination of biodegradable fuel and surface tension to zip around the water’s surface, creating a safe — and nutritious — alternative to environmental monitoring devices made from artificial polymers and electronics.

Avatar photo

Published

on

The Edible Aquatic Robot is a groundbreaking innovation developed by EPFL scientists, who have successfully created a biodegradable and non-toxic device to monitor waterways. This remarkable invention leverages the Marangoni effect, which allows aquatic insects to propel themselves across the surface of water, to create a safe and efficient alternative to traditional environmental monitoring devices made from artificial polymers and electronics.

The robot’s clever design takes advantage of a chemical reaction within a tiny detachable chamber that produces carbon dioxide gas. This gas enters a fuel channel, forcing the fuel out and creating a sudden reduction in water surface tension that propels the robot forward. The device can move freely around the surface of the water for several minutes, making it an ideal solution for monitoring waterways.

What makes this invention even more remarkable is its edible nature. The robot’s outer structure is made from fish food with a 30% higher protein content and 8% lower fat content than commercial pellets. This not only provides strength and rigidity to the device but also acts as nourishment for aquatic wildlife at the end of its lifetime.

The EPFL team envisions deploying these robots in large numbers, each equipped with biodegradable sensors to collect environmental data such as water pH, temperature, pollutants, and microorganisms. The researchers have even fabricated ‘left turning’ and ‘right turning’ variants by altering the fuel channel’s asymmetric design, allowing them to disperse the robots across the water’s surface.

This work is part of a larger innovation in edible robotics, with the Laboratory of Intelligent Systems publishing several papers on edible devices, including edible soft actuators as food manipulators and pet food, fluidic circuits for edible computation, and edible conductive ink for monitoring crop growth. The potential applications of these devices are vast, from stimulating cognitive development in aquatic pets to delivering nutrients or medication to fish.

As EPFL PhD student Shuhang Zhang notes, “The replacement of electronic waste with biodegradable materials is the subject of intensive study, but edible materials with targeted nutritional profiles and function have barely been considered, and open up a world of opportunities for human and animal health.” This groundbreaking innovation in edible aquatic robots has the potential to revolutionize the way we monitor waterways and promote sustainable development.

Continue Reading

Artificial Intelligence

“Paws-itive Progress: Amphibious Robotic Dog Breaks Ground in Mobility and Efficiency”

A team of researchers has unveiled a cutting-edge Amphibious Robotic Dog capable of roving across both land and water with remarkable efficiency.

Avatar photo

Published

on

The field of robotics has taken a significant leap forward with the development of an amphibious robotic dog, capable of efficiently navigating both land and water. This innovative creation was inspired by the remarkable mobility of mammals in aquatic environments.

Unlike existing amphibious robots that often draw inspiration from reptiles or insects, this robotic canine is based on the swimming style of dogs. This design choice has allowed it to overcome several limitations faced by insect-inspired designs, such as reduced agility and load capacity.

The key to the amphibious robot’s water mobility lies in its unique paddling mechanism, modeled after the natural swimming motion of dogs. By carefully balancing weight and buoyancy, the engineers have ensured stable and effective aquatic performance.

To test its capabilities, the researchers developed and experimented with three distinct paddling gaits:

* A doggy paddle method that prioritizes speed
* A trot-like style that focuses on stability
* A third gait that combines elements of both

Through extensive experimentation, it was found that the doggy paddle method proved superior for speed, achieving a maximum water speed of 0.576 kilometers per hour (kph). On land, the amphibious robotic dog reaches speeds of 1.26 kph, offering versatile mobility in amphibious environments.

“This innovation marks a big step forward in designing nature-inspired robots,” says Yunquan Li, corresponding author of the study. “Our robot dog’s ability to efficiently move through water and on land is due to its bioinspired trajectory planning, which mimics the natural paddling gait of real dogs.”

The implications of this technology are vast and exciting, with potential applications in environmental research, military vehicles, rescue missions, and more. As we continue to push the boundaries of what’s possible with robotics, it’s clear that the future holds much promise for innovation and discovery.

Continue Reading

Trending